• Title/Summary/Keyword: Digital PI controller

Search Result 106, Processing Time 0.021 seconds

Digital PI Control for Constant Speed Driving of Brushless DC Motor (브러시리스 직류전동기의 정속도 운전을 위한 디지털 PI제어)

  • Kim, Hyun-Soo;Baek, Soo-Hyun;Kim, Yong;Maeng, In-Jae;Kim, I1-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.379-381
    • /
    • 1999
  • This paper presents a study of the performance of a brushless DC motor (BLDCM) speed control system. Recently, most motor controls are implemented in digital electronics. Digital controllers tend to be more accurate, less susceptible to noise and more flexible in terms of programming. The system used a digital PI controller in order to implement the constant speed of Brushless DC motor. Microprocessor used in this experiment is 80c196kc. The applied motor has been constructed using a 50W, 150V, 3000rpm, four-pole motor.

  • PDF

Single-Phase Seven-Level Grid-Connected Inverter Employing Digital PI Controller (디지털 PI 컨트롤을 사용한 단상 7레벨 연계형 인버터)

  • Le, Tuan-Vu;Choi, Woo-Seok;Park, Jin-Wook;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.441-442
    • /
    • 2015
  • This paper proposes a new single-phase seven-level grid-connected inverter. Operational principle with switching function are analyzed. A digital proportional-integral current-control algorithm was implemented in a TMS320F28335 DSP to keep the current injected into the grid sinusoidal. To verify the performance of the proposed inverter, PSIM simulation and experimental results are also shown in this paper.

  • PDF

Experimental Study on Superheat Control of a Variable Speed Heat Pump (가변속 열펌프의 과열도 제어특성에 관한 실험적 연구)

  • 최종민;김용찬;하진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.233-241
    • /
    • 2001
  • In the present study, various experiments were performed to investigate the capacity modulation and transient response control using a variable speed compressor and electronic expansion valve(EEV). Based on the experimental results, the operation control algorithm and real time digital control system were constructed to adjust the superheat at the inlet of the compressor. Superheat control was fulfilled using both the PI feedback controller and PI controller combined with a feedforward concept. As a result, the tracking performance of the latter was better than that of former.

  • PDF

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Speed Control of Permanent Magnet Synchronous Motor Using Space voltage Vector PWM (공간전압벡터 PWM 기법을 이용한 영구자석형 동기전동기의 속도제)

  • 윤덕용;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1112-1120
    • /
    • 1994
  • This paper presents a servo control scheme for the surface-mounted permanent-magnet synchronous motor(SPMSM) which essentially uses vector control algorithm. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IGBT module. The proposed scheme is verified through digital simulations and experiments for 2.2kW SPMSM and shows good dynamic performance.

  • PDF

Design of Speed Controller for an Induction Motor with Inertia Variation

  • Sin E. C.;Kong B. G.;Kim J. S.;Yoo J. Y.;Park T. S.;Lee J. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.374-379
    • /
    • 2001
  • In this paper, a novel design algorithm of speed controller for an Induction motor with the inertia variation is proposed. The main contribution of our work is a very robust, reliable and stable procedure for setting of the PI gains against the specified range of the inertia variation of an induction motor using Kharitonovs robust control theory. Therefore, the basic segment of controller design, the variation of induction motor inertia is estimated by the RLS (Recursive least square) method. PI based speed controller is widely used in industrial application for its simple structure and reliable performance. In addition the Kharitonov robust control theory is used for verification stability of closed-loop transfer function. The performance of this proposed design method is proved by digital simulation and experimentation with high performance DSP based induction motor driving system.

  • PDF

Design and Implementation of a Current Controller for Boost Converters Using a DSP (DSP를 이용한 부스트 컨버터의 전류 제어기 설계 및 구현)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • This paper introduces a method for design and implementation of a current controller for boost converter operating in continuous conduction mode (CCM) using a digital signal processor (DSP). A Proportional-Integral (PI) type current controller outputs an average voltage command for inductor, used in the input side of the boost converter, and the duty-ratio of PWM (pulse width modulation) signal for switching device is directly calculated from the average voltage command. The gains of the PI current controller are selected such that the current response characteristics are the same as those of a first-order low-pass filter. The proposed current control scheme is implemented using a DSP based on fixed-point math operations and an experimental study has been performed to validate the proposed method.

Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems

  • Sadeghi, Mohamad-Ali;Daryabeigi, Ehsan
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.74-81
    • /
    • 2014
  • In this study, a brain emotional learning-based intelligent controller (BELBIC) is developed for the speed control of an interior permanent magnet synchronous motor (IPMSM). A novel and simple model of the IPMSM drive structure is established with the intelligent control system, which controls motor speed accurately without the use of any conventional PI controllers and is independent of motor parameters. This study is conducted in both real time and simulation with a new control plant for a laboratory 3 ph, 3.8 Nm IPMSM digital signal processor (DSP)-based drive system. This DSP-based drive system is then compared with conventional BELBIC and an optimized conventional PI controller. Results show that the proposed method performs better than the other controllers and exhibits excellent control characteristics, such as fast response, simple implementation, and robustness with respect to disturbances and manufacturing imperfections.

Controller Design and By-Pass Structure for the Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Lee, Seong-Jun;Bae, Hyun-Su;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.206-208
    • /
    • 2009
  • In this paper, a systematical controller design method for a twostage grid-connected photovoltaic power conditioning system is proposed. For a pre-stage boost converter to achieve the stable operation in the entire region of solar array, the digital resistive current mode controller is used. This algorithm is very simple to implement with a digital controller and there is no power stage parameter dependency in the controller design. For a post-stage single-phase full-bridge inverter, a PI controller with a feedforward compensation for the inner current control is employed. Furthermore, in case that the operating point of the solar array under varying environmental conditions is higher than the required voltage for the inverter current control, the bypass mode for the boost converter is possible for the more efficient operation. The proposed control scheme is validated through the experiment of the prototype two-stage power conditioning system hardware with a 200W solar array.

  • PDF

CRA Based Robust Controller Design for PWM Converter (CRA 기법을 이용한 PWM 컨버터의 강인제어기 설계)

  • Kim, Soo-Cheol;Kim, Hyung-Chul;Chung, Gyo-Bum;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • In this paper, a robust controller for PWM converter is proposed. The proposde converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. Conventionally, the try and error method has been used to design the current controller considering the switching frequency of the devices and sampling frequency of the digital controller. But this proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. First, the CRA based current controller algorithm is explained. Then the validity of proposed controller is verified through the PSiM simulation and experience results.