• Title/Summary/Keyword: Digital Optical Method

Search Result 391, Processing Time 0.025 seconds

Development of Combined Optical System for Analysis of Impinging Butane Flame (충돌 부탄 화염의 분석을 위한 복합 광학 계측 기법 개발)

  • Baek, Seung-Hwan;Ahn, Seong-Soo;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.69-73
    • /
    • 2005
  • Three-dimensional density distributions of an impinging and eccentric flame have been analyzed numerically and experimentally by a combined optical system with a digital speckle tomography. The flame has been ignited by premixed butane/air from air holes and impinged vertically against a plate located at the upper side of tile burner nozzle. In order to compare with experimental data, computer synthesized phantoms of impinging and eccentric flames have been made and reconstructed by a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique has been developed for the analysis of speckle displacements to investigate wall jet regions of the impinging flame including sharp variation of the flow direction and pressure gradient. The reconstructed temperatures have been compared with a temperature photography by an infrared camera and results of numerical analysis using a finite-element method.

  • PDF

Analysis of electro-optic polymer digital optical switch with a coupling region modified for optimum mode coupling (최적의 모드 결합을 얻기 위해 수정된 결합 영역을 갖는 전기광학 폴리머 디지탈 광스위치의 해석)

  • 이상신;신상영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.87-93
    • /
    • 1997
  • An electro-optic polymer digital optical switch with a coupling region modified for optimum mode coupling is proposed, and it is analyzed by using the beam propagation method combined with the effective index method. Its modified coupling region is adiabatically introduced along the propagation direction from the branching point of the two waveguides. The structure of the modified coupling region and its refractive index profiles are designed to optimize the mode coupling in the Y-branch waveguide. Therefor, the switching performance of the device may be enhanced with a fixed device length. It is confirmed from the numerical calculation that the drive voltage is reduced by more than 30 percents and te crosstalk is improved by about 8dB.

  • PDF

Tilt Aberration Compensation Using Interference Patterns in Digital Holography

  • Cho, Hyung-Jun;Kim, Doo-Cheol;Yu, Young-Hun;Shin, Sang-Hoon;Jung, Won-Gi
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.451-455
    • /
    • 2009
  • We present a numerical procedure that compensates for tilt phase aberration in in-line digital holography by computing the period of interference patterns in the reconstructed phase image. This method enables the reconstruction of correct and accurate phase information, even if strong tilt aberrations exist. Example applications of tilt aberration compensation are shown for a tilted plate, a micro-lens array, and a thin film transistor. This method is convenient because it uses only one hologram and no hardware to minimize the tilt aberration.

Integral-floating Display with 360 Degree Horizontal Viewing Angle

  • Erdenebat, Munkh-Uchral;Baasantseren, Ganbat;Kim, Nam;Kwon, Ki-Chul;Byeon, Jina;Yoo, Kwan-Hee;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • A three-dimensional integral-floating display with 360 degree horizontal viewing angle is proposed. A lens array integrates two-dimensional elemental images projected by a digital micro-mirror device, reconstructing three-dimensional images. The three-dimensional images are then relayed to a mirror via double floating lenses. The mirror rotates in synchronization with the digital micro-mirror device to direct the relayed three-dimensional images to corresponding horizontal directions. By combining integral imaging and the rotating mirror scheme, the proposed method displays full-parallax three-dimensional images with 360 degree horizontal viewing angle.

An Optical Quenching and Efficiency of Laser for the Virtual Display System (허상 디스플레이에 적용되는 레이저 다이오드의 출력 효율과 파장 변이에 대한 연구)

  • Chi, Yongseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.129-134
    • /
    • 2016
  • This paper studies the high frequency PWM (pulse width modulation) driving technique to increase an optical efficiency and to prevent an optical color quenching of blue laser for head up display on vehicles using digital micro mirror device (DMD) panel and yellow phosphor wheel. The proposed approach adaptively drives the current pulse width modulated signals of high optical power of blue laser to increase the lifetime and to decrease the stem temperature of laser. This method stabilizes the temperature of laser according to the driving environment and the forward current capacity. By the proposed method, the brightness of blue laser is improved by about 37% compared to the continuous waveform current driving method.

A digital measurement method for rotational errors of a machine spindle (스핀들 회전 오차 측정의 디지틀 방법에 관한 연구)

  • 공인복;박윤창;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.443-450
    • /
    • 1989
  • A digital testing method for measurement of radial error motions of a spindle is investigated with special emphasis on developing a computer-aided in-situ inspection for machine tool manufacturing. The method utilizes three non-contact type probes and an optical encoder, based on a special computational algorithm to eliminate undesirable offset and roundness errors of the master spindle. Details of the design of hardware and software required to realize the testing method are described. Finally, advantages and limitations of the method are discussed with several test results.

Remote Sensing of Nearshore Currents using Coastal Optical Imagery (해안 광학영상 자료를 이용한 쇄파지역 연안류 측정기술)

  • Yoo, Jeseon;Kim, Sun-Sin
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • In-situ measurements are labor-intensive, time-consuming, and limited in their ability to observe currents with spatial variations in the surf zone. This paper proposes an optical image-based method of measurement of currents in the surf zone. This method measures nearshore currents by tracking in time wave breaking-induced foam patches from sequential images. Foam patches in images tend to be arrayed with irregular pixel intensity values, which are likely to remain consistent for a short period of time. This irregular intensity feature of a foam patch is characterized and represented as a keypoint using an image-based object recognition method, i.e., Scale Invariant Feature Transform (SIFT). The keypoints identified by the SIFT method are traced from time sequential images to produce instantaneous velocity fields. In order to remove erroneous velocities, the instantaneous velocity fields are filtered by binding them within upper and lower limits, and averaging the velocity data in time and space with a certain interval. The measurements that are obtained by this method are comparable to the results estimated by an existing image-based method of observing currents, named the Optical Current Meter (OCM).

Digital watermarking technique using Computer-Generated Hologram and optoelectrical extraction algorithm (컴퓨터 형성 홀로그램과 광전자적 추출 알고리즘을 이용한 디지털 워터마킹 방법)

  • Cho, Kyu-Bo;Shin, Chang-Mok;Kim, Soo-Joong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • We propose a digital watermarking technique using a computer generated hologram. The proposed method uses two random patterns separated from the computer generated hologram (CGH). One of those is embedded into the original image as hidden watermark information and then the reconstructed image can be obtained by an optical decoding algorithm with the other one as a decoding key. We analyze an occlusion of the watermarked image that is the original image containing the hidden pattern. The embedding process is performed digitally and reconstruction optically Computer simulation and an optical experiment are shown in support of the proposed technique.

A High-speed Digital Laser Grating Projection System for the Measurement of 3-dimensional Shapes

  • Park, Yoon-Chang;Park, Chul-Geun;Ahn, Seong-Joon;Kang, Moon-Ho;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • In the non-contact 3-dimensional (3D) shape measurements, the fringe pattern projection method based on the phase-shifting technique has been considered very effective for its high speed and accuracy. The digital fringe projector in particular has great flexibility in generating fringe patterns since the patterns can be controlled easily by the computer program. In this work, we have developed a high-speed digital laser grating projection system using a laser diode and a polygon mirror, and evaluated its performance. It has been demonstrated that all the optical measurements required to find out the profile of a 3D object could be carried out within 31 ms, which confirmed the validity of our 3D measurement system. The result implies the more important fact that the speed in 3D measurement can be enhanced remarkably since, in our novel system, there is no device like a LCD or DMD whose response time limits the measurement speed.

Digital watermarking using binary phase hologram and optical interferometer (이진 위상 홀로그램과 광학적 간섭계를 이용한 디지털 워터마킹)

  • 김병열;서동환;조규보;신창목;김수중;김철수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.377-382
    • /
    • 2003
  • We propose a new optical watermarking method, which can protect the copyright of digital data, using a binary phase hologram and a Mach-Zehnder interferometer. Using a simulated annealing algorithm, the binary phase hologram of the mark image to be hidden is designed. We obtained a watermarked image by linearly superposing the hologram, which is the watermark, in the original image. The extraction processing of the mark image from the watermarked image is achieved by placing the phase-modulated watermarked image on a LCD in one path and the phase-modulated original image on another LCD in the other path in the Mach-Zehnder interferometer. The mark image was obtained by inverse Fourier transforming the phase modulated interference intensity. We confirmed that the proposed method is robust for the cropped images through computer simulation, and we implemented it optically using LCDs which are phase modulation devices.