• Title/Summary/Keyword: Digital Imaging and Communications in Medicine(DICOM)

Search Result 39, Processing Time 0.026 seconds

A Study of the Characteristics of the Human External Auditory Canal Using 3-Dimensional Medical Imaging (3차원 의료영상을 이용한 인체 외이도 특징에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.467-473
    • /
    • 2017
  • Using Digital Imaging and Communications in Medicine(DICOM) and a 3D medical imaging program, the characteristics of the external auditory canal(EAC) were compared. Using images of the ears of 63 different male and female subjects of varying age, this study measured and compared EAC transverse axis lengths, internal diameter circumferences, and upper and lower curvature angles. The findings of the study indicated differences in EAC shapes according not only to age and sex but also to the left and right of the same subject. A comparison between the sexes of the subjects (35 males and 28 females) indicated that, on average, the length of the EAC was 4.75mm longer in males. Based on the lower curvature angle, the interior side of the diameter circumference of the EAC was found to be reduced on average by 37.2% compared to the exterior side. Although the upper curvature angle was on average $25.7^{\circ}$ larger than the lower curvature angle, 4 subjects showed a larger lower curvature angle and large differences between the upper and lower curvature angles were observed in 8 subjects of the younger age group (4~14 years old). This indicated changes in EAC curvature shapes during growth. This study presents a method to raise safety and precision by comparing direct measurements taken through physical means and indirect measurements acquired from existing ear samples. This was possible due to technological developments in which 3D medical image representation technology creates images close to reality, and, through further development, this method is expected to be used for standardization research of EAC shapes.

Validation and comparison of volume measurements using 1 multidetector computed tomography and 5 cone-beam computed tomography protocols: An in vitro study

  • Juliana Andrea Correa, Travessas;Alessandra Mendonca, dos Santos;Rodrigo Pagliarini, Buligon;Nadia Assein, Arus;Priscila Fernanda Tiecher, da Silveira;Heraldo Luis Dias, da Silveira;Mariana Boessio, Vizzotto
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.399-408
    • /
    • 2022
  • Purpose: The purpose of this study was to compare volume measurements obtained using 2 image software packages on Digital Imaging and Communications in Medicine (DICOM) images acquired from 1 multidetector computed tomography and 5 cone-beam computed tomography devices, using different protocols for physical volume measurements. Materials and Methods: Four pieces of bovine leg were prepared. Marrow was removed from 3 pieces, leaving cortical bone exposed. The resulting space of 1 piece was filled with water, another was filled with propylene glycol, and the third was left unfilled. The marrow in the fourth sample was left fully intact. Volume measurements were obtained after importing DICOM images into the Dolphin Imaging 11.95 and ITK-SNAP software programs. Data were analyzed using 3-way analysis of variance with a generalized linear model to determine the effects of voxel size, software, and content on percentage mean volume differences between tomographic protocols. A significance level of 0.05 was used. Results: The intraclass correlation coefficients for intraobserver and interobserver reliability were, respectively, 0.915 and 0.764 for the Dolphin software and 0.894 and 0.766 for the ITK-SNAP software. Three sources of statistically significant variation were identified: the interaction between software and content (P=0.001), the main effect of content (P=0.014), and the main effect of software (P=0.001). Voxel size was not associated with statistically significant differences in volume measurements. Conclusion: Both content and software influenced the accuracy of volume measurements, especially when the content had gray values similar to those of the adjacent tissues.

A Study on the Acoustic Analysis Method of the External Ear Canal Using DICOM Images (DICOM 영상을 이용한 외이도 음향해석 방법에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.73-79
    • /
    • 2019
  • This study simulated external ear canal modeling with different external ear canal lengths, vertical flexion angles, and inner/outer diameter ratios using digital imaging and communications in medicine(DICOM) of the head temporal region and measured the acoustic sensitivity. The experiment was performed by increasing the audible frequency for humans by 200 Hz and expressing the frequency constantly transmitted at 1 Pa as the eardrum acoustic volume and presented the measurements by linear and quadratic curve regression analysis. The results showed that the longer the external ear canal length and the higher the ratio of the outer/inner diameter, the faster the acoustic response at lower frequencies. The acoustic sensitivity correlation of the meta-model using regression analysis showed a 77% influence by the external ear canal length and 5% by the external/internal diameter ratio, while the vertical flexion angle did not show a significant relationship. This showed that auditory acoustic sensitivity of humans is a factor that reacts faster at a low frequency when the external ear canal length is longer and when the difference between the outer and inner diameter is higher.

Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application

  • Seong, Hyunyoung;Yun, Daehun;Yoon, Kyung Seob;Kwak, Ji Soo;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.403-412
    • /
    • 2022
  • Background: Most pain management techniques for challenging procedures are still performed under the guidance of the C-arm fluoroscope although it is sometimes difficult for even experienced clinicians to understand the modified three-dimensional anatomy as a two-dimensional X-ray image. To overcome these difficulties, the development of a virtual simulator may be helpful. Therefore, in this study, the authors developed a virtual simulator and presented its clinical application cases. Methods: We developed a computer program to simulate the actual environment of the procedure. Computed tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data were used for the simulations. Virtual needle placement was simulated at the most appropriate position for a successful block. Using a virtual C-arm, the authors searched for the position of the C-arm at which the needle was visualized as a point. The positional relationships between the anatomy of the patient and the needle were identified. Results: For the simulations, the CT DICOM data of patients who visited the outpatient clinic was used. When the patients revisited the clinic, images similar to the simulated images were obtained by manipulating the C-arm. Transforaminal epidural injection, which was difficult to perform due to severe spinal deformity, and the challenging procedures of the superior hypogastric plexus block and Gasserian ganglion block, were successfully performed with the help of the simulation. Conclusions: We created a pre-procedural virtual simulation and demonstrated its successful application in patients who are expected to undergo challenging procedures.

Evaluation of Usefulness of Automatic Exposure Control (AEC) by Comparison Analysis of Entrance Surface Dose (ESD) and Entropy in Clinical Application of Digital Radiography (DR) (디지털 방사선 시스템의 노출 유형에 따른 임상 적용 시 입사표면선량 및 Entropy 비교분석을 통한 자동노출제어장치의 유용성 평가)

  • Choi, Ji-An;Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.8
    • /
    • pp.276-283
    • /
    • 2019
  • The purpose of this study is to evaluate the usefulness of automatic exposure control (AEC) by analyzing entrance surface dose (ESD) and entropy on using automatic exposure and manual exposure. The experimental method was to measure the dose by placing a semiconductor dosimeter on the Rando Phantom for the Pelvis, Abdomen, Skull, and Chest regions. The DICOM file was simultaneously acquired and then entropy was analyzed by using Matlab. As a result, when using the automatic exposure control, dose of all sites was lower than manual exposure's dose and entropy was high. In addition, paired t-test was performed for each item and p<0.05 was found in each item. In conclusion, the use of automatic exposure control can be a useful method to contribute to the optimization of the exposure dose and the image quality by reducing the amount of unnecessary radiation amount and information loss that can occur in X-ray examination.

Interoperability Framework between GRID and PACS based on Web Services (웹서비스 기반의 Grid-PACS 상호운용성 프레임워크)

  • Lee, Bong-Hwan;Cho, Hyun-Sug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1799-1808
    • /
    • 2010
  • Recently the increasing collaborative research requires the remote medical and clinical data sharing and access of external institutions. In this paper, an interoperability framework between Grid and PACS using Web services is proposed and implemented in order to provide flexible and efficient medical data management. The Digital Imaging and Communications in Medicine(DICOM) standard defines medical image data exchange and transfer between PACSs and image databases. However, medical data exchange between hospitals is limited within the trusted and static environments. Moreover, DICOM does not provide medical data management and the Grid middleware does not include standard toolkit to access DICOM data. To address this issue, a Web services-based Grid Service Mediator (WGSM) which provides PACS integration and medical image data management is developed. The WGSM consists of several service mediators such as compress mediator, GridFTP mediator, RFT mediator, MyProxy mediator, MDS mediator, and RLS mediator and others. The proposed Web services-based framework provides user authentication and secure data access between PACSs in collaborative environments. In particular, the WGSM allows ordinary users to access remote PACS data in a simple and efficient manner without any the knowledge about underlying Grid middleware.

Set Up and Operation for Medical Radiation Exposure Quality Control System of Health Promotion Center (건강검진센터의 의료방사선 피폭 품질관리 시스템 구축 운영 경험 보고)

  • Kim, Jung-Su;Jung, Hae-Kyoung;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT $357.9mGy{\cdot}cm$ in abdomen and pelvic CT, $572.4mGy{\cdot}cm$ in brain without CT, $55.9mGy{\cdot}cm$ in calcium score/heart CT, screening CT at $54mGy{\cdot}cm$ in chest screening CT(low dose screening CT scan), $284.99mGy{\cdot}cm$ in C-spine CT and $341.85mGy{\cdot}cm$ in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows $274.0mGy{\cdot}cm2$ and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.

An Efficient Method for Aneurysm Volume Quantification Applicable in Any Shape and Modalities

  • Chung, Jaewoo;Ko, Jung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.514-523
    • /
    • 2021
  • Objective : Aneurysm volume quantification (AVQ) using the equation of ellipsoid volume is widely used although it is inaccurate. Furthermore, AVQ with 3-dimensional (3D) rendered data has limitations in general use. A novel universal method for AVQ is introduced for any diagnostic modality and application to any shape of aneurysms. Methods : Relevant AVQ studies published from January 1997 to June 2019 were identified to determine common methods of AVQ. The basic idea is to eliminate the normal artery volume from 3D model with the aneurysm. After Digital Imaging and Communications in Medicine (DICOM) data is converted and exported to stereolithography (STL) file format, the 3D STL model is modified to remove the aneurysm and the volume difference between the 3D model with/without the aneurysm is defined as the aneurysm volume. Fifty randomly selected aneurysms from DICOM database were used to validate the different AVQ methods. Results : We reviewed and categorized AVQ methods in 121 studies. Approximately 60% used the ellipsoid method, while 24% used the 3D model. For 50 randomly selected aneurysms, volumes were measured using 3D Slicer, RadiAnt, and ellipsoid method. Using 3D Slicer as the reference, the ratios of mean difference to mean volume obtained by RadiAnt and ellipsoid method were -1.21±7.46% and 4.04±30.54%, respectively. The deviations between RadiAnt and 3D Slicer were small despite of aneurysm shapes, but those of ellipsoid method and 3D Slicer were large. Conclusion : In spite of inaccuracy, ellipsoid method is still mostly used. We propose a novel universal method for AVQ that is valid, low cost, and easy to use.

Sex Determination Using a Discriminant Analysis of Maxillary Sinuses and Three-Dimensional Technology

  • Jeong-Hyun Lee;Hee-Jeung Jee;Eun-Seo Park;Seok-Ho Kim;Sung-Suk Bae
    • Journal of dental hygiene science
    • /
    • v.22 no.4
    • /
    • pp.249-255
    • /
    • 2022
  • Background: Sexual dimorphism is important for sex determination in the field of forensics. However, sexual dimorphism is commonly assessed using cone beam computed tomography (CBCT) rather than three-dimensional (3D) modeling software; therefore, studies using a more accurate measurement approach are necessary. This study assessed the sexual dimorphism of the MS using a 3D modeling program to obtain information that could contribute to the fields of surgery and forensics. Methods: The CBCT data of 60 patients (age, 20~29 y; 30 males and 30 females) admitted to the Department of Orthodontics at the Dankook University School of Dentistry were provided in Digital Imaging and Communications in Medicine (DICOM) format. The left MS and right MS were modeled based on the DICOM files using the Mimics (version 22; Materialise, Leuven, Belgium) 3D program and converted to stereolithography (STL) files used to measure the width, length, and height of the MS, infraorbital foramen (IOF), right MS, and left MS. The average of three repeated measurements was calculated, and a reliability test was performed to ensure data reliability (Cronbach's α=0.618). A canonical discriminant analysis was performed using a standard approach (left: Box's M=0.096; right: Box's M=0.115). Results: Males had greater values for all parameters (MS width, MS length, MS height, IOF, right MS, left MS) than females. The discriminant analysis identified six independent variables (MS width, MS height, MS length, IOF, right MS, left MS) that could identify sex. The left MS and right MS correctly identified the sex of 81.7% and 71.7% of the patients, respectively, with the left MS having higher accuracy. Conclusion: This study confirmed that, for Korean individuals, the left MS has a better ability to identify sex than the right MS. These results may contribute to sex identification in the fields of surgery and forensics.

Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems (인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축)

  • Seung-seob Kim;Dong Ho Lee;Min Woo Lee;So Yeon Kim;Jaeseung Shin;Jin‑Young Choi;Byoung Wook Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1196-1206
    • /
    • 2021
  • Purpose To construct a standard dataset of contrast-enhanced CT images of liver tumors to test the performance and safety of artificial intelligence (AI)-based algorithms for clinical decision support systems (CDSSs). Materials and Methods A consensus group of medical experts in gastrointestinal radiology from four national tertiary institutions discussed the conditions to be included in a standard dataset. Seventy-five cases of hepatocellular carcinoma, 75 cases of metastasis, and 30-50 cases of benign lesions were retrieved from each institution, and the final dataset consisted of 300 cases of hepatocellular carcinoma, 300 cases of metastasis, and 183 cases of benign lesions. Only pathologically confirmed cases of hepatocellular carcinomas and metastases were enrolled. The medical experts retrieved the medical records of the patients and manually labeled the CT images. The CT images were saved as Digital Imaging and Communications in Medicine (DICOM) files. Results The medical experts in gastrointestinal radiology constructed the standard dataset of contrast-enhanced CT images for 783 cases of liver tumors. The performance and safety of the AI algorithm can be evaluated by calculating the sensitivity and specificity for detecting and characterizing the lesions. Conclusion The constructed standard dataset can be utilized for evaluating the machine-learning-based AI algorithm for CDSS.