• Title/Summary/Keyword: Digital Image Correction (DIC)

Search Result 4, Processing Time 0.018 seconds

2D Image Numerical Correction Method for 2D Digital Image Correlation (2차원 DIC 기법 적용을 위한 2D 이미지 보정 수치 해석 기법)

  • Kim, Wonseop;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.391-397
    • /
    • 2017
  • Recently, digital image correlation (DIC) techniques have been used to measure dynamic deformation during tensile testing. The standard tensile test method measures the average displacement of the relevant specimen to calculate the true stress-strain curve. Therefore, the validity of the true stress curve is restricted to the stress incurred within the uniform stretching interval, i.e., the maximum stress corresponds to the starting point of the necking deformation. Alternatively, if DIC is used, the effective range of the strain and strain rate can be extended to the breaking point of the tensile specimen, because of the feasibility of measuring the local strain over the entire area of interest. Because of these advantages, many optical 3D measurement systems have been introduced and used in research and industry. However, the conventional 3D measurement systems are exceedingly expensive and time consuming. In addition, these systems have the disadvantage of a very large equipment size which makes their transport difficult. In this study, a 2D image correction method employing a 2D DIC measurement method in conjunction with a numerical analysis method is developed using a smartphone. The results of the proposed modified 2D DIC method yielded higher accuracy than that obtained via the 3D measurement equipment. In conclusion, it was demonstrated that the proposed 2D DIC and calibration methods yield accurate measurement results with low time costs.

Colour Interpolation of Tongue Image in Digital Tongue Image System Blocking Out External Light (디지털 설진 시스템의 색상 보정)

  • Kim, Ji-Hye;Nam, Dong-Hyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Objectives The aim of this study is to propose an optimized tongue colour interpolation method to achieve accurate tongue image rendering. Methods We selected 60 colour chips in the chips of DIC color guide selector, and then divided randomly the colour chips into two groups. The colour chips of a group (Gr I) were used for finding the optimized colour correction factor of error and those of the other group (Gr II) were used for verifying the correction factor. We measured colour value of the Gr I colour chips with spectrophotometer, and took the colour chips image with a digital tongue image system (DTIS). We adjusted colour correction factor of error to equal the chip colour from each method. Through that process, we obtained the optimized colour correction factor. To verify the correction factor, we measured colour value of the Gr II colour chips with a spectrophotometer, and took the colour chips image with the DTIS in the two types of colour interpolation mode (auto white balance mode and optimized colour correction factor mode). And then we calculated the CIE-$L^*ab$ colour difference (${\Delta}E$) between colour values measured with the spectrophotometer and those from images taken with the DTIS. Results In auto white balance mode, The mean ${\Delta}E$ between colour values measured with the spectrophotometer and those from images taken with the DTIS was 13.95. On the other hand, in optimized colour correction factor mode, The mean ${\Delta}E$ was 9.55. The correction rate was over 30%. Conclusions In case of interpolating colour of images taken with the DTIS, we suggest that procedure to search the optimized colour correction factor of error should be done first.

Application of Vision-based Measurement System for Estimation of Dynamic Characteristics on Hanger Cables (행어케이블의 동특성 추정을 위한 영상계측시스템 적용)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.1-10
    • /
    • 2012
  • Along with the development of coasts, islands and mountains, the demand of long-span bridges increases which, in turn, brings forth the construction of cable-supported bridges like suspension and cable-stayed bridges. There are various types of statically indeterminate structures widely applied that supported the main girder with stay cables, main cables, hanger cables with aesthetic structural appearance. As to the cable-supported bridges, the health monitoring of a bridge can be identified by measuring tension force on cable repeatedly. The tension force on cable is measured either by direct measurement of stress of cable using load cell or hydraulic jack, or by vibration method estimating tension force using cable shape and measured dynamic characteristics. In this study, a method to estimate dynamic characteristics of hanger cables by using a digital image processing is suggested. Digital images are acquired by a portable digital camcorder, which is the sensor to remotely measure dynamic responses considering convenient and economical aspects for use. A digital image correlation(DIC) technique is applied for digital image processing, and an image transform function(ITF) to correct the geometric distortion induced from the deformed images is used to estimate subpixel. And, the correction of motion of vision-based measurement system using a fixed object in an image without installing additional sensor can be enhanced the resolution of dynamic responses and modal frequencies of hanger cables.

Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test (유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보))

  • Kim, Young-Suk;Kim, Jin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.718-725
    • /
    • 2016
  • In this study, the plastic flow curve of commercially pure titanium sheet (CP Ti) actively used in the plate heat exchanger etc., was evaluated. The plastic flow curve known as hardening curve is a key factor needed in conducting finite element analyses (FEA) for the forming process of a sheet material. A hydraulic bulge test was performed on the CP Ti sheet and the strain in this test was measured using the DIC method and ARAMIS system. The measured true stress-true strain curve from the hydraulic bulge test (HBT) was compared with that from the tensile test. The measured true stress-true strain curve from the hydraulic bulge test showed stable plastic flow curve over the strain range of 0.7 which cannot be obtained in the case of the uniaxial tensile test. The measured true stress-true strain curve from the hydraulic bulge test can be fitted well by the hardening equation known as the Kim-Tuan model.