• Title/Summary/Keyword: Digital EEG

Search Result 97, Processing Time 0.023 seconds

A research on EEG coherence variation by relaxation (이완에 따른 EEG 코히런스 변화에 대한 연구)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Woo, Jin-Cheol;Kim, Chi-Joong;Kim, Young-Woo;Kim, Ji-Hye;Kim, Dong-Keun
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • This study is to analyze change of connectivity between brain positions caused by relaxation through EEG coherence. EEG spectrum analysis method has been used to analyze brain activity when relaxation was experienced. However, the spectrum analysis method has a limit that could not observe interactive reaction between brain-functional positions. Therefore, coherence between positions was analyzed to observe connectivity between the measurement positions in this study. Through the method, the reaction of the central nervous system caused by the emotion change was observed. Twenty-four undergraduates of both genders(12 males and 12 females) were asked to close their eyes and listen to the sound. During experiment, EEG was measured at eight positions. The eight positions were F3, F4, T3, T4, P3, P4, O1, and O2 in accordance with International 10-20 system. The sounds with white noise and without were used for relaxation experience. Subjective emotion was measured to verify whether or not they felt relaxation. Subjective emotion of participants were analyzed by ANOVA method(Analysis of Variance). In the result, it was proved that relaxation was subjectively evoked when participants heard sound. Accordingly, it was proved that relaxation could be enhanced by the mixed white noise. EEG coherence between the measurement positions was analyzed. T-test was performed to find its significant difference between relaxation and not-relaxation. In the results of EEG coherence, connectivity with occipital lobes has been increased with relaxation, and connectivity with parietal lobes has been increased with non-relaxed state. Therefore, brain connectivity has shown different pattern between relaxed emotion and non-relaxed emotion.

  • PDF

Next-Generation Personal Authentication Scheme Based on EEG Signal and Deep Learning

  • Yang, Gi-Chul
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1034-1047
    • /
    • 2020
  • The personal authentication technique is an essential tool in this complex and modern digital information society. Traditionally, the most general mechanism of personal authentication was using alphanumeric passwords. However, passwords that are hard to guess or to break, are often hard to remember. There are demands for a technology capable of replacing the text-based password system. Graphical passwords can be an alternative, but it is vulnerable to shoulder-surfing attacks. This paper looks through a number of recently developed graphical password systems and introduces a personal authentication system using a machine learning technique with electroencephalography (EEG) signals as a new type of personal authentication system which is easier for a person to use and more difficult for others to steal than other preexisting authentication systems.

Spectral and Nonlinear Analysis of EEG in Various Age Groups (뇌파의 연령별 스펙트럼 및 비선형적 분석)

  • Joo, Eun-Yeon;Kim, Eung-Su;Park, Ki-Duck;Choi, Kyoung-Gyu
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Background & Objectives : Fractal Dimension(FD) could be an index of correlation between variable parameters in non-linear chaotic signals. We tried to demonstrate that EEG wave is compatible with chaotic waves by measuring the Lyapunov exponent index and compared the difference of FD between variable age groups(teens, 30's, 50's) Methods : We estimated the Lyapunov exponent index and the FD from digital EEG data among five persons in each normal age groups by using the software which is programmed in our laboratory. Statistical analysis was done with SPSS win 8.0. The statistical differences of Lyapunov exponent index and FD between each electrodes and each age groups were done with ANOVA and paired sample t-test. Result : The Lyapunov exponent indexes were larger than 1 in each electrode and age group. There is no statistical difference in FD between each electrodes and each age groups. Except in 30th age group. In this group the FD of right hemisphere is larger than that of left hemisphere. Conclusion : The result of Lyapunov exponent index means EEG wave is a non-linear chaotic signal. And the results of FD suggest that chaotic parameters of right hemisphere is larger than those of left hemisphere at rest at least in younger people. We think that chaotic parameters can be a useful tool in investigating the variable diseases or brain states.

  • PDF

A Study on the Adaptive Technique for Artifact Cancelling in Electroencephalogram Analysis System (뇌파 분석 시스템에서의 Artifact 제거를 위한 적응 기법에 관한 연구)

  • 유선국;김기만;남기현
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.389-396
    • /
    • 1997
  • Several types of electrical artifact seen on electroencephalogram( EEG) records are described. Those are the EOG and the PVC roller pump noise, and so on. An adaptive digital filtering of the electroencephalogram( EEG) is a successful way of suppressing mains interference, but it affects some of the frequency components of the signal, whore artifacts may not be acceptable in some cafes of automatic EEG processing. Thus we studied the method for cancelling these artifacts. This proposed method does not use the reference channel, and is realized by connecting the linear predictor and the fixed FIR filter for the EOG artifact, and by cascading the linear predictor and the noise canceller for the pump artifact. The simulation results illustrate the performances of the proposed method in terms of the capability of interferences suppression. In the results we obtained about 20 dB noise reduction.

  • PDF

Development of depression diagnosis system using EEG signal (뇌파 측정 신호를 이용한 우울증 진단장치 개발)

  • Kim, Kyu-Sung;Jung, Ju-Hyeon;Lee, Woo-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.452-458
    • /
    • 2017
  • In this study, a device was developed for diagnosing depression using EEG signals from July 2016 to June 2017. For normal people, the left alpha rhythm is more activated than the right alpha rhythm, but for the depressed patients, the right alpha rhythm is more activated than the left one. An analog circuit and digital low pass filter were used for noise removal and amplification of EEG, and the Hamming window function was applied to eliminate the signal leakage generated by the fast Fourier transform. To verify the validity of the developed diagnosis system, the EEG of 20 university students in the 3rd and 4th grade with an average age of 24 years was measured. Calculations of the relative value of the left and right alpha rhythm for the depression diagnosis revealed a minimum, maximum, and mean value of 66.7, 113.3, and 92.2, respectively. In addition, 7 out of 20 subjects were between 90 and 95, and those with a higher mean deviation of approximately 20 tended to have mild depression. These results can provide meaningful data for the development of depression treatment equipment by solving the left and right brain asymmetry problem, and it may be applied usefully to diagnose depression after clinical trials on a large number of depressed patients.

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

A Study on Consumer's Emotional Consumption Value and Purchase Intention about IoT Products - Focused on the preference of using EEG - (IoT 제품에 관한 소비자의 감성적 소비가치와 구매의도에 관한 연구 - EEG를 활용한 선호도 연구를 중심으로 -)

  • Lee, Young-ae;Kim, Seung-in
    • Journal of Communication Design
    • /
    • v.68
    • /
    • pp.278-288
    • /
    • 2019
  • The purpose of this study is to analyze the effects of risk and convenience on purchase intention in the IOT market, and I want to analyze the moderating effect of emotional consumption value. In this study, two products were selected from three product groups. There are three major methods of research. First, theoretical considerations. Second, survey analysis. Reliability analysis and factor analysis were performed using descriptive statistics using SPSS. Third, we measured changes of EEG according to in - depth interview and indirect experience. As a result of the hypothesis of this study, it was confirmed that convenience of use of IoT product influences purchase intention. Risk was predicted to have a negative effect on purchase intentions, but not significant in this study. This implies that IoT products tend to be neglected in terms of monetary loss such as cost of purchase, cost of use, and disposal cost when purchasing. In-depth interviews and EEG analysis revealed that there is a desire to purchase and try out the IoT product due to the nature of the product, the novelty of new technology, and the vague idea that it will benefit my life. The aesthetic, symbolic, and pleasure factors, which are sub - elements of emotional consumption value, were found to have a great influence. This is consistent with previous research showing that emotional consumption value has a positive effect on purchase intention. In-depth interviews and EEG analyzes also yielded the same results. This study has revealed that emotional consumption value affects the intention to purchase IoT products. It seems that companies producing IoT products need to concentrate on marketing with more emotional consumption value.

Development of Digital Video-EEG Editing System (디지털 영상 뇌파계 편집 시스템 개발)

  • 김새별;이소진;김주한;이용희;김인영;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.81-90
    • /
    • 2001
  • 본 연구에서는 디지털 영상 뇌파계(digital video electroencephalogram, Digital VEEG)에서 비디오 영상과 뇌전도 파형의 동기화된 편집 시스템을 구성한다. 이 시스템은 기존 아날로그 영상 뇌파계(analog video electroencephalogram)의 동기화 문제와 디지털 영상 시스템에서의 영상편집 문제를 해결하기 위하여 MPEG-I(이하 MPEG) 고압축 기술을 이용한 MPEG 인코딩 보드(encoding board)와 MPEG 편집 엔진(editing engine)을 각각 사용하였다. 시스템은 디지털 영상뇌파계모듈과 디지털 편집 모듈로 구성되며, 뇌전도모듈에서는 환자에게 연결된 전극을 통해 들어온 뇌파를 생체신호증폭기를 이용하여 증폭한 후 AD 보드(analog to digital board)를 이용 디지털화한다. 디지털 카메라로 촬영된 환자영상의 아날로그 영상신호(NTSC 신호)는 MPEG 인코딩 보드를 이용하여 고압축 디지털화한다. 이후 디지털화된 뇌전도신호와 MPEG 형식의 영상을 시간 동기화하여 두 개의 모니터에 각각보여준다. 편집 모듈에서는 영상신호와 뇌파신호를 어느 부분이든 간단한 조작으로 오려 붙이기(cut and paste) 기능을 이용할 수 있다. 본 시스템은 사용된 데이터 모두 디지털 기술을 이용하여 영상과 뇌파신호의 정확한 동기화 및 각각의 데이터의 오려 붙이기 기능을 가능케 하였으며, 이는 환자의 데이터를 관리 및 보관하는데 있어, 임상의에게 의미 있는 자료만을 모아서 효율적으로 관리할 수 있게 해준다. 이와 같은 장점을 갖는 디지 영상뇌파계 편집시스템을 구현하였다.

  • PDF

A Study on Computer-Assisted Automatic Spike Detection System in EEG Signal of Epileptic Patients (콤퓨터를 이용한 간질환자 뇌파의 극파 자동검출 방법에 관한 연구)

  • Park, Gwang-Seok;Min, Byeong-Gu;Lee, Chung-Ung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.28-32
    • /
    • 1980
  • A digital system has been designed for the detection of abnormal spikes appearing in the epileptic patient's electroencephalogram(EEG). The detection is based on the waveform characteristics of spikes, such as the large slope, the sharpness of the apex, and the time duration of the spike. After the patient's data are collected and processed suing a minicomputer and A/D converter, the computer algorithms recognize the spikes based on the parameters representing the above waveform characteristics.

  • PDF

Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method (점증적 증가를 이용한 첨점 기반의 간질 검출)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.287-293
    • /
    • 2015
  • This study proposed signal processing techniques and neural network with weighted fuzzy membership functions(NEWFM) to detect epileptic seizure from EEG signals. This study used wavelet transform(WT), sequential increment method, and phase space reconstruction(PSR) as signal processing techniques. In the first step of signal processing techniques, wavelet coefficients were extracted from EEG signals using the WT. In the second step, sequential increment method was used to extract peaks from the wavelet coefficients. In the third step, 3D diagram was produced from the extracted peaks using the PSR. The Euclidean distances and statistical methods were used to extract 16 features used as inputs for NEWFM. The proposed methodology shows that accuracy, specificity, and sensitivity are 97.5%, 100%, 95% with 16 features, respectively.