• Title/Summary/Keyword: Digital Color image Processing

Search Result 161, Processing Time 0.03 seconds

Depthmap Generation with Registration of LIDAR and Color Images with Different Field-of-View (다른 화각을 가진 라이다와 칼라 영상 정보의 정합 및 깊이맵 생성)

  • Choi, Jaehoon;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.28-34
    • /
    • 2020
  • This paper proposes an approach to the fusion of two heterogeneous sensors with two different fields-of-view (FOV): LIDAR and an RGB camera. Registration between data captured by LIDAR and an RGB camera provided the fusion results. Registration was completed once a depthmap corresponding to a 2-dimensional RGB image was generated. For this fusion, RPLIDAR-A3 (manufactured by Slamtec) and a general digital camera were used to acquire depth and image data, respectively. LIDAR sensor provided distance information between the sensor and objects in a scene nearby the sensor, and an RGB camera provided a 2-dimensional image with color information. Fusion of 2D image and depth information enabled us to achieve better performance with applications of object detection and tracking. For instance, automatic driver assistance systems, robotics or other systems that require visual information processing might find the work in this paper useful. Since the LIDAR only provides depth value, processing and generation of a depthmap that corresponds to an RGB image is recommended. To validate the proposed approach, experimental results are provided.

Color assessment of resin composite by using cellphone images compared with a spectrophotometer

  • Rafaella Mariana Fontes de Braganca;Rafael Ratto Moraes ;Andre Luis Faria-e-Silva
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.23.1-23.11
    • /
    • 2021
  • Objectives: This study assessed the reliability of digital color measurements using images of resin composite specimens captured with a cellphone. Materials and Methods: The reference color of cylindrical specimens built-up with the use of resin composite (shades A1, A2, A3, and A4) was measured with a portable spectrophotometer (CIELab). Images of the specimens were obtained individually or pairwise (compared shades in the same photograph) under standardized parameters. The color of the specimens was measured in the images using RGB system and converted to CIELab system using image processing software. Whiteness index (WID) and color differences (ΔE00) were calculated for each color measurement method. For the cellphone, the ΔE00 was calculated between the pairs of shades in separate images and in the same image. Data were analyzed using 2-way repeated-measures analysis of variance (α = 0.05). Linear regression models were used to predict the reference ΔE00 values of those calculated using color measured in the images. Results: Images captured with the cellphone resulted in different WID values from the spectrophotometer only for shades A3 and A4. No difference to the reference ΔE00 was observed when individual images were used. In general, a similar ranking of ΔE00 among resin composite shades was observed for all methods. Stronger correlation coefficients with the reference ΔE00 were observed using individual than pairwise images. Conclusions: This study showed that the use of cellphone images to measure the color difference seems to be a feasible alternative providing outcomes similar to those obtained with the spectrophotometer.

Digital Processing and Acoustic Backscattering Characteristics on the Seafloor Image by Side Scan Sonar (Side Scan Sonar 탐사자료의 영상처리와 해저면 Backscattering 음향특성)

  • 김성렬;유홍룡
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.143-152
    • /
    • 1987
  • The digital data were obtained using Kennedy 9000 magnetic tape deck which was connected to the SMS960 side scan sonar during the field operations. The data of three consecutive survey tracks near Seongsan-po, Cheju were used for the development of this study. The softwares were mainly written in Fortran-77 using VAX 11/780 MINI-COMPUTER (CPU Memory; 4MB). The established mapping system consists of the pretreatment and the digital processing of seafloor image data. The pretreatment was necessary because the raw digital data format of the field magnetic tapes was not compatible to the VAX system. Therefore the raw data were read by the personal computer using the Assembler language and the data format was converted to IBM compatible, and next data were communicated to the VAX system. The digital processing includes geometrical correction for slant range, statistical analysis and cartography of the seafloor image. The sound speed in the water column was assumed 1,500 m/sec for the slant range correction and the moving average method was used for the signal trace smoothing. Histograms and cumulative curves were established for the statistical analysis, that was purposed to classify the backscattering strength from the sea-bottom. The seafloor image was displayed on the color screen of the TEKTRONIX 4113B terminal. According to the brief interpretation of the result image map, rocky and sedimentary bottoms were very well discriminated. Also it was shown that the backscattered acoustic pressurecorrelateswith the grain size and sorting of surface sediments.

  • PDF

A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System (비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구)

  • 이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.207-217
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

Quantitative Study on Tongue Images according to Exterior, Interior, Cold and Heat Patterns (표리한열의 설 특성에 관한 정량적 연구)

  • Eo Yun-Hye;Kim Je-Gyun;Yoo Hwa-Seung;Kim Jong-Yeol;Park Kyung-Mo
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.134-144
    • /
    • 2006
  • Tongue diagnosis is an important diagnostic method in traditional Oriental medicine. It has been especially accepted that quantitative analysis of tongue images allows the accurate diagnosis of the exterior-interior and cold-heat patterns of a patient. However, to ensure stable and reliable results, the color reproduction of such images must first be error-tree. Moreover, tongue diagnosis is much influenced by the surrounding illumination and subjective color recognition, so it has to be performed objectively and quantitatively using a digital diagnostic machine. In this study, 457 tongue images of outpatients were collected using the Digital Tongue Inspection System. Through statistical analysis, the result shows that the heat and cold patterns can be distinguished clearly based on the hue value of the tongue images. The average hue value (1.00) of the tongue's image in the cold pattern is higher than that in the heat pattern (0.99).

  • PDF

Temporal Color Rolling Suppression Algorithm Considering Time-varying Illuminant (조도 변화를 고려한 동영상 색 유동성 저감 알고리즘)

  • Oh, Hyun-Mook;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • In this paper, a temporal color and luminance variation suppression algorithm for a digital video sequence is proposed by considering time-varying light source. When a video sequence is sampled with the periodically emitting illuminant and with a short exposure time, the color rolling phenomenon occurs, where the color and the luminance of the image periodically change from field to field. In conventional signal processing techniques, the luminance variation remaining in the resultant video sequence degrades the constancy of the image sequence. In the proposed method, we obtain video sequences with constant luminance and color by compensating for the inter-field luminance variation. Based on a motion detection technique, the amount of the luminance variation for each channel is estimated on the background of the sequence without the effects of moving objects. The experimental results clearly show that our strategy efficiently estimated the illuminant change without being affected by moving objects, and the variations were efficiently reduced.

A Study on the Peg-in-hole of chamferless Parts using Force/Moment/Vision Sensor (힘/모멘트/비전센서를 사용한 챔퍼가 없는 부품의 삽입작업에 관한 연구)

  • Back, Seung-Hyop;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.119-122
    • /
    • 2001
  • This paper discusses the peg-in-hole task of chamferless parts using force/moment/vision sensors. The directional error occurring during the task are categorized into two cases according to the degree of initial errors, And different Mechanical analysis has been accomplished for each cases. This paper proposes an algorithm which enables to reduce intial directional error using digital Images acquired from hand-eyed vision sensor, And to continue the task even with the large directional error by adjusting the error using digital image processing. The effectiveness of the algorithm has been demonstrated through experimentation using 5-axis robot equipped with a developed controller force/moment sensor and color digital camera on its hand.

  • PDF

Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface (표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정)

  • Lee, Dae Hee;Won, Se Youl;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.

FE-CBIRS Using Color Distribution for Cut Retrieval in IPTV (IPTV에서 컷 검색을 위한 색 분포정보를 이용한 FE-CBIRS)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • This paper proposes novel FE-CBIRS that finds best position of a cut to be retrieved based on color feature distribution in digital contents of IPTV. Conventional CBIRS have used a method that utilizes both color and shape information together to classify images, as well as a method that utilizes both feature information of the entire region and feature information of a partial region that is extracted by segmentation for searching. Also, in the algorithm, average, standard deviation and skewness values are used in case of color features for each hue, saturation and intensity values respectively. Furthermore, in case of using partial regions, only a few major colors are used and in case of shape features, the invariant moment is mainly used on the extracted partial regions. Due to these reasons, some problems have been issued in CBIRS in processing time and accuracy so far. Therefore, in order to tackle these problems, this paper proposes the FE-CBIRS that makes searching speed faster by classifying and indexing the extracted color information by each class and by using several cuts that are restricted in range as comparative images.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF