• Title/Summary/Keyword: Digital Aerial Orthophoto

Search Result 38, Processing Time 0.028 seconds

A Study on Application of PC Based Digital Photogrammetric System - Focusing on Producing Digital Map, DEM and Orthophoto - (PC 기반 수치사진측량시스템의 활용방안에 관한 연구 - 수치지도, DEM, 정사영상 제작을 중심으로-)

  • Park Byung Uk;Seo Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.303-312
    • /
    • 2005
  • Digital map, DEM and orthophoto were produced by using PC based digital photogrammetric system and aerial photo images that were obtained with scale of 1/5,000 and scanning density of 1200dpi and 600dpi, and the accuracies of these outputs were evaluated by various methods. Non-skilled operator produced digital map with PC based digital photogrammetric system and aerial photo images scanned by 1200dpi. The results showed that it was impossible to insert contour lines, but the rest elements could be drawn with the accuracy of 1/1,000. In automatic generation of DEM, scanning density of aerial photo and grid interval of DEM didn't affect the accuracy of DEM. In production of orthophoto, we could know that the larger grid interval of DEM, the lower accuracy of orthophoto, but scanning density of original image had more effect on quality of orthophoto. By the way, accuracy comparison between orthophoto and digital map with same check points showed that orthophoto was more accurate than digital map, and orthophoto could be used in more diverse areas. Hereafter in civilian part, aerial photo image and PC based digital photogrammetric system could make practical application of data correction and update in GIS.

A Production of Orthophoto Map from Aerial Photos using Digital Photogrammetry Technique (수치사진측양기법(數値寫眞測量技法)에 의한 항공사진(航空寫眞)으로부터 정사투영사진지도(正射投影寫眞地圖)의 제작(製作))

  • Yeu, Bock-Mo;Lee, Hyun-Jik;Jeong, Soo;Jo, Hong-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.1 s.3
    • /
    • pp.73-80
    • /
    • 1994
  • Most terrain information have been generally acquired by map. Because the map presents the real terrain, not by real figure but by contours, geometric figures, symbols, texts, and colors, it is not easy to interpret the real terrain by map. For this reason, aerial photos or terrestrial photos also have been used sometimes in the terrain analysis. But photos have geometrical displacement caused by the position of camera at the exposition time and the relief of the object. So, for accurate posional analysis, orthophoto maps produced by optical rectifier have been used. But, it is hard to produce orthophoto map by optical rectifier and the process is so slow. This study aims to present an accurate and rapid method to produce orthophoto map by generating digital elevation model from stereo aerial photos on common computer using the digital photogrammetric technique and producing orthophoto map digitally using the digital elevation model.

  • PDF

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

A Study on the Generation of Three Dimensional Orthophoto Map from Aerial Photograph by Digital Photogrammetry (수치사진측량 기법을 이용한 항공사진의 정사투영사진 지도 생성에 관한 연구)

  • 조재호;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.203-211
    • /
    • 1998
  • A traditional method to produce three dimensional orthophoto map has been studied by digital photogrammetry which decides a height by digitally searching conjugate points on the stereo image. Many researches in digital photogrammetric field are still in progress to determine conjugate points automatically. In this study, we analyze the effect of accuracy of area-based image matching with changing eight types of target area size using four types of image pyramid. The result of image matching to each method compared with 1/5,000 digital mapping data. We decided a optimal size of target area on a percentage of image matching. Digital elevation model is generated by matching results and bundle method. As a result, three dimensional orthophoto map is made in terms of digital elevation model and orthophoto.

  • PDF

The Digital Orthophoto Production by the Automative Generation of DEM using Non-photogrammetric Scanner (비측정용 주사기를 사용한 수치표고모델의 자동생성에 의한 수치정사사진 제작)

  • Park, Woon-Yong;Yi, Gi-Chul;Lee, In-Soo;Kim, Jin-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.24-36
    • /
    • 2000
  • This study deals with the optimal method of orthophoto products using the non-photogrammetric scanners. we scanned positive film of aerial photographs at the different resolution and producted the orthophoto using the automatically generated DEM based on the Digital Photogrammetric Workstation, considering aerial image resolutions, DEM interval, resampling method and outpixel size. As a results, the acquired accuracy was worse in horizontal, but good in vertical. So It will be expected that orthophoto using non-photo grammetric scanner is good enough for the acquisition of GIS data and the calculation of soil volumes.

  • PDF

Applications of Digital Orthophoto in Cadastre (지적분야에서의 수치정사사진 활용방안에 관한 연구)

  • 박병욱;김상수;최윤수;차영수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.233-243
    • /
    • 1999
  • In this study, sample sites are chosen where digitalized cadastral maps are available, and boundaries of forestry, farming lands, and residence are clearly distinguishable. Digital orthophotos, produced from aerial photographs, are overlaid with digitalized cadastral maps to grope for applications of digital orthophoto in cadastre. The conclusions and applicable fields of this study are as follows. The first. digital orthophoto is applicable to solve problems such as discordance and duplication of boundary produced in the process of digitizing cadastral maps. The second, using digital orthophoto, it is possible to extract regions where a trouble of ownership would exist and so the necessity of cadastral resurveying can be brought. The third, by overlaying digital orthophoto and cadastral map, it can be used effectively for the present situation maintenance of buildings. The fourth, because it is possible to examine current land use of each lot, digital orthophoto may contribute to decide the validity of land category on cadastral map.

  • PDF

Analysis of Applicability of Orthophoto Using 3D Mesh on Aerial Image with Large File Size (대용량 항공영상에 3차원 메시를 이용한 정사영상의 적용성 분석)

  • Kim, Eui Myoung;Choi, Han Seung;Park, Jeong Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.155-166
    • /
    • 2017
  • As the utilization of aerial images increases, a variety of software using unmanned aerial photogrammetric procedures as well as traditional aerial photogrammetric procedures are being provided. Previously, software that used the unmanned aerial photogrammetric procedure was used for images captured in small areas. Recently, however, software that uses unmanned aerial photogrammetric procedures for large-scale images taken by using aerial photogrammetric cameras has appeared. Therefore, this study generated ortho-images using aerial photogrammetry and unmanned aerial photogrammetry for large aerial images, and compared the features of both procedures through qualitative and quantitative comparisons. Experiments in the study area show that using the 3D mesh effectively removes the relief displacement of the building rather than using the digital surface model to generate ortho-images.

Generation of True-Orthphotos using a LIDAR DSM (라이다 DSM을 이용한 엄밀정사영상 제작)

  • Park, Sun-Mi;Lee, Im-Pyeong;Cho, Seong-Kil;Min, Seong-Hong;Oh, So-Jung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.273-276
    • /
    • 2007
  • In this study, we generated DSM(Digital Surface Model)s and orthophotos with both LIDAR data and scanned aerial photos and compared them with those generated from only the scanned photos. We checked the relief displacements of buildings appearing in the generated orthophotos, where the displacement should not be exist in a true-orthophoto. The RMSE of the relief displacement in the orthophoto generated using a LIDAR DSM is 3 m while the RMSE in the orthophotos from a DSM based on the image matching is 6.1 m. It was revealed that the orthophoto from a LIDAR DSM are closer to a true-orthophoto. But the results in the accuracy test and similarity evaluation of the generated orthophotos were contrary to former results because the roof texture of buildings were expanded to occlusion areas around the buildings. With the central area of the photo, we can generate sufficiently accurate true-orthophotos using a LIDAR DSM.

  • PDF

The Generation of Accurate Digital Orthophoto by DTM Accuracy Improvement (DTM의 정확도 향상에 의한 정밀 수치정사사진 생성)

  • 박운용;이기부;정성모;이인수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.243-250
    • /
    • 1998
  • From early plane-table photogrammetry through the analog and analytical stages, photogrammetry has now reached the digital photogrammetry stage using the image stored at computers. Digital Photogrammetry using aerial photograph generates the DTM and digital orthophoto. Expecially, DTM is important for improving the accuracy of digital ortho photo. so Many experimental are required. In this study, therefore deals with the generation process of digital orthophotos using DTM with breakline and without breakline.

  • PDF

Accuracy Analysis of UAV Data Processing Using DPW (DPW를 이용한 UAV 자료 처리의 정확도 분석)

  • Choi, Yun Woong;You, Ji Ho;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.3-10
    • /
    • 2015
  • The various studies and applications for UAVS(Unmaned Aerial Vehicle System) have been recently increased as a new technology to create 3D spatial information rapidly and accurately. UAV(Unmanned Aerial Vehicle) is economical when comparing with conventional technique, such as satellite and aerial survey, and can quickly obtain high resolution data under 5cm. This paper examined the utilizing possibility to creating 3D spatial information and analysis the compatibility the UAV data obtained by non-metric digital camera with conventional numerical photogrammetric system. The DEM and normal orthophoto is created by exclusive S/W and DPW(Digital Photogrammetry Workstation) then analysis the accuracy of created data. As a result, the accuracy of the created DEM and normal orthophoto, which is obtained by UAV then processed by DPW, is not satisfied;so it is estimated that the compatibility the UAV data with conventional numerical photogrammetric system is low.