• Title/Summary/Keyword: Diffusive monitor

Search Result 4, Processing Time 0.015 seconds

The Sampling Efficiencies of Volatile Organic Compounds(VOCs) to the Diffusive Monitor with Activated Carbon Fiber (활성탄섬유를 이용한 확산포집기의 공기 중 유기용제 포집효율에 관한 연구)

  • Byeon, Sang-Hoon;Park, Cheon-Jae;Oh, Se-Min;Lee, Chang-Ha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.187-201
    • /
    • 1996
  • This study was to evaluate the efficiency of diffusive monitor using activated carbon fiber(ACF, KF-1500) in measuring airborne organic solvents. The following characteristics were identified and studied as critical to the performance of diffusive monitor; recovery, sampling rate, face velocity, reverse diffusion and storage stability. For the evaluation of the performance of this monitor, MIBK, PCE, toluene were used as organic solvents. In the sampling rate experiments, eight kinds of solvents (n-hexane, MEK, DIBK, MCF, TCE, CB, xylene, cumene) as well as the above solvents were used. The results were as follows: 1. The desorption efficiencies(DE's) of ACF diffusive monitor ranged from 83 % to 101 %. In contrast, those of coconut shell charcoal ranged from 78 % to 102 %. Especially, the DE's of ACF for the polar solvents such as MEK were superior to those of charcoal. 2. Experimental sampling rates on ACF were average 42ml/min(37-46ml/min) for 11 organic solvents at $24{\pm}2^{\circ}C$, $50{\pm}5%RH$. However ideal sampling rates(DA/L) were 33 % higher than experimental sampling rates. 3. The initial response(15~16 min) of the testing monitor was 2 times higher than the actual concentration determined by the reference methods at $24{\pm}2^{\circ}C$, $8{\pm}5%RH$ and $80{\pm}5%RH$. Within 1 hours, the curve reached a linear horizontal line at low humidity condition. But sampling efficiencies decreased with respect to time at high humidity condition. And sampling efficiencies were higher at high humidity condition than low humidity condition for MIBK. 4. At very low velocity (less than 0.02 m/sec), the concentration of ACF diffusive monitor were poorly estimated. But ACF diffusive monitor were not affected at higher velocity(0.2 m/sec-0.6 m/sec). 5. There was no significant reverse diffusion when the ACF monitors were exposed to clean air for 2 hours after being exposed for 2 hours at the level of 1 TLV. 6. There was no significant sample loss during 3 weeks of storage at room temperature and 5 weeks of storage at refrigeration.

  • PDF

Evaluation of Badge-Type Diffusive Sampler Performance for Measuring Indoor Formaldehyde

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Suntae
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The purposes of this study were to determine the efficiency of using a badge-type diffusive sampler to measure formaldehyde concentrations indoors, and to evaluate the uncertainty associated with the use of data from a diffusive sampler. A diffusive sampler using 2,4-dinitrophenylhydrazine (DNPH) reagent was found to be a suitable tool for measuring the formaldehyde concentration in an indoor environment. The agreement between results of the diffusive sampler and DNPH cartridge were good, showing a correlation coefficient of 0.996. The sampling rate for the diffusive sampler was calculated to be 1.428 L $hr^{-1}$, with a standard deviation of 0.084 L $hr^{-1}$. It was found through analysis that the uncertainty associated with the sampling rate and the mass of the formaldehyde transported into the diffusive sampler by diffusion was the dominant contributor to the total.

The Theory and Application of Diffusive Gradient in Thin Film Probe for the Evaluation of Concentration and Bioavailability of Inorganic Contaminants in Aquatic Environments (박막분산탐침(diffusive gradient in thin film probe)의 수중 생물학적 이용가능한 중금속 측정 적용)

  • Hong, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.691-702
    • /
    • 2013
  • This review paper summarizes the theory, application, and potential drawbacks of diffusive gradient in thin film (DGT) probe which is a widely used in-situ passive sampling technique for monitoring inorganic contaminants in aquatic environments. The DGT probe employs a series of layers including a filter membrane, a diffusive hydrogel, and an ionic exchange resin gel in a plastic unit. The filter side is exposed to an aquatic environment after which dissolved inorganic contaminants, such as heavy metals and nuclides, diffuse through the hydrogel and are accumulated in the resin gel. After retrieval, the contaminants in the resin gel are extracted by strong acid or base and the concentrations are determined by analytical instruments. Then aqueous concentrations of the inorganic contaminants can be estimated from a mathematical equation. The DGT has also been used to monitor nutrients, such as ${PO_4}^{3-}$, in lakes, streams, and estuaries, which might be helpful in assessing eutrophic potential in aquatic environments. DGT is a robust in-situ passive sampling techniques for investigating bioavailability, toxicity, and speciation of inorganic contaminants in aquatic environments, and can be an effective monitoring tool for risk assessment.

The effects of face velocity and path length on the uptake rates of volatile organic compounds measured by diffusive samplers (확산포집기로 공기중 ppb 농도수준의 휘발성유기물질 포집시 확산길이와 기류변화가 시료포집속도에 미치는 영향)

  • Byeon, Sang-Hoon;Stock, Thomas H.;Morandi, Maria T.;Afshar, Masoud;Cross, Jay
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 2001
  • Passive samplers have been used for personal, indoor, and outdoor air monitoring of VOCs at ppb concentrations in community and office environments. The path length of modified passive sampler was shortened, so it was intended to increase an uptake rate. The performance of the modified 3M 3500 organic vapor monitor(OVM) as a tool for assessing exposures to toxic air pollutants in nonoccupational community environments was evaluated using combined controlled test atmospheres of six selected target volatile organic compounds(VOCs): benzene, methyl tert-butyl ether(MTBE), chloroform, 1,4-dichlorobenzene, tetrachloroethylene, and toluene. The experiments were conducted by exposing the dosimeters to concentrations of $50{\sim}100{\mu}g/m^3$ on six face velocity(0.00, 0.02, 0.06, 0.12, 0.20, 0.30 m/sec) for 24 hours. If the uptake rate was increased, that means that we could use the passive sampler more effectively. The uptake rates were increased linearly according to reduce the path length. Although the diffusion path length was shortened, the change of uptake rate was within ${\pm}25%$ of theoretical value, indicating that the modified passive sampler(TM) can be effectively used over the range of concentrations and environmental conditions tested with a 24-h sampling period if the face velocities were over 0.12 m/s for 6 components of VOCs. But when the face velocities were less than 0.12 m/s, uptake rates were reduced more than expected values. So, the passive sampler with the shortened path length should be used at indoor or outdoor environment where the face velocity should be over about 0.10 m/s. If the path length was shortened more, the uptake rate was more effected by starvation.

  • PDF