• Title/Summary/Keyword: Diffusion mixing

Search Result 315, Processing Time 0.027 seconds

Case Study on the Mixing Proportions of 100 Year Life Time Concrete (내구수명 100년 해양 콘크리트의 배합사례)

  • Jang, Bong-Seok;Ahn, Jeong-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1073-1076
    • /
    • 2008
  • This study shows some results of concrete mixing design has 100 years life time. The ratios of ternary blended cement are 4 types. the ratios of blast furnace slag cement are 3 types. In this case study, 40%, 50% and 60% replacement ratio of blast furnace slag(BSF) to OPC are used, also 35:45:20, 30:35:35, 30:40:30 and 35:40:25 ratio of OPC:BSF:FA are used. The mixing design tests include slump, air content, compressive strength and thermal properties of concrete. The compressive strength tests are executed at the age of 3, 7, 28, 56, and 91 days. The coefficient of chloride diffusion is determined by NT Build 492 method. The purpose of this study is to shows the results of case studies as the ratio of blended cement varies.

  • PDF

Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant (단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션)

  • Seok, Jun;Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.

Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair (세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구)

  • Kim, Seon-Hwa;Hwang, Changmo;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

Optimization and Mathematical Modeling of the Transtubular Bioreactor for the Production of Monoclonal Antibodies from a Hybridoma Cell Line

  • Halberstadt, Craig R.;Palsson, Bernhanrd O.;Midgley, A.Rees;Curl, Rane L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR), However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.

An Investigation on Dynamic Behaviors of Single Vortex with CO2 Dilution in a CH4-Air Jet Diffusion Flame (CH4공기 제트 확산화염에서 CO2 첨가에 따른 단일 와동의 동적거동에 관한 연구)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1209-1219
    • /
    • 2003
  • The dynamic behaviors of the single vortex interacting with $CH_4-Air$ jet diffusion flame are investigated numerically. The numerical method is based on a predict-corrector scheme for a low Mach number flow. A two-step global reaction mechanism is adopted as a combustion model. Studies are conducted in fixed initial velocities for the three cases according as where $CO_2$ is added; (1) without dilution, (2) dilution in fuel stream and (3) dilution in oxidizer stream. A single vortex is generated by an axisymmetric jet, which is made by an impulse of a cold fuel when a flame is developed entirely in a computational domain. The simulation shows that $CO_2$ dilution in fuel stream results in somewhat larger vortex radius, and greater amount of entrainment of surrounding fluid than in other cases. Thus, the dilution of $CO_2$ in fuel stream enhances the mixing in single vortex and increases the stretching of the flame surface. The budgets of the vorticity transport equation are examined to reveal the mechanism of vortex formation when $CO_2$ is added. It is found that, in the case of $CO_2$ dilution in fuel stream, the vortex destruction due to volumetric expansion and the vortex production due to baroclinic torque are more dominant than in other cases.

Basic Study on Diffusion Branch of Tribrachial Flame with the Variation of Flammability Limits and Heat Loss Under Small Fuel Concentration Gradient (미소 농도구배 조건에서 열손실 및 가연한계가 삼지화염의 확산화염에 미치는 영향에 대한 기초 연구)

  • Cho, Sang-Moon;Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.505-513
    • /
    • 2010
  • The tribrachial flame has attracted interest as a basic structure of the flame edge. This flame structure helps understand stabilization of laminar flames and re-ignition of turbulent flames. A number of analytical and experimental studies have been carried out on the tribrachial flame. However, the effect of the variation of the flammability limits on the structure of the tribrachial flame has not been studied in detail. In this study, the effect of non-symmetric flammability limits on the flame structure was investigated by adopting a simple numerical scheme based on several laminar flame theories. A fixed velocity field was considered and boundary matching algorithm was used on the premixed branch. The variation of the diffusion branches under the non-symmetric flammability limits and heat loss was investigated. The formation and extinction of the diffusion branch behind the premixed branch were successfully described. This basic study can help understand the fundamental structure of the flame and can form the basis of subsequent detailed studies.

Effect of Additional Water on Durability and Pore Size Distribution in Cement Mortar (단위수량 증가에 따른 시멘트 모르타르의 내구성능과 공극분포에 관한 연구)

  • Kwon, Seung Jun;Lee, Hack Soo;Park, Sun Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.75-83
    • /
    • 2012
  • Porosity in concrete has close relationship with durability characteristics. Additionally mixed water can help easy mixing and workability but causes increased porosity, which yields degradation of durability performance. In this paper, cement mortar samples with 0.45 of w/c (water to cement ratio) are prepared and durability performances are evaluated with additional water from 0.45 to 0.60 of w/c. Various durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed. Then they are analyzed with changing porosity. Changing ratios and the patterns of durability performance are quantitatively evaluated considering pore size distribution, total porosity, and additional water content.

Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash (타이어 고무 애쉬 치환에 따른 플라이애쉬 혼입 콘크리트의 내구성능 성능 평가)

  • Kwon, Seung-Jun;Yoon, Yong-Sik;Park, Sang-Min;Kim, Hyeok-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.647-653
    • /
    • 2016
  • In the paper, durability performance in FA (Fly Ash) blended concrete is evaluated considering replacement of FA with TDFA (Tire Derived Fuel Ash) from 3.0% to 12%. TDFA is a byproduct from combustion process in thermal power plant, where chopped rubber is mixed for boiling efficiency. This is the 1st study on application of TDFA to concrete as mineral admixture. For the work, concrete samples containing 0.5 of w/b (water to binder) ratio and 20% replacement ratio of FA are prepared. With replacing FA with TDFA to 12%, durability performance is evaluated regarding compressive strength, carbonation, chloride diffusion, and porosity. The results of compressive strength, carbonation, and porosity tests show reasonable improvement in durability performance to 12% replacement of TDFA. In particular, clear decreasing diffusion coefficient is observed with increasing TDFA replacement due to its packing effect. Concrete containing TDFA can be effective for durability improvement when workability is satisfied in mixing stage.

A Study on Mixing Behavior of Dredging Turbidity Plume Using Two-Dimensional Numerical Model (이차원 수치모형을 이용한 준설 탁도플륨의 혼합거동 연구)

  • Park, Jae Hyeon;Kim, Young Do;Lee, Man Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.59-69
    • /
    • 2013
  • The numerical simulations were performed to analyze the advection-diffusion processes of dredging-induced turbidity plume using RMA2 and RMA4 models in Bunam reservoir, Seosan, Chungnam. Field survey was also performed to measure the turbidity using the multi water quality monitoring system (YSI6600EDS). In the field survey, the vertical and horizontal distributions of the turbidity were measured during the dredging operation in Bunam reservoir. RMA2 model was used to simulate the velocity distributions in both the whole domain and the 2nd part of Bunam reservoir. RMA4 model was also used to simulate the concentration distribution in only the 2nd part of Bunam reservoir, where the dredging work were conducted. The comparison of the simulation results with the field data for the advection-diffusion of the turbidity plume using the concentration ratio concepts shows that the numerical model can be applied to analyze the environmental impact of dredging works.

Numerical Simulations of Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 맥동 불안정성의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.859-866
    • /
    • 2010
  • Nonlinear dynamics of pulsating instability-diffusional-thermal instability with Lewis numbers sufficiently higher than unity-in counterflow diffusion flames, is numerically investigated by imposing a Damkohler number perturbation. The flame evolution exhibits three types of nonlinear behaviors, namely, decaying pulsating behavior, diverging behavior (which leads to extinction), and stable limit-cycle behavior. The stable limit-cycle behavior is observed in counterflow diffusion flames, but not in diffusion flames with a stagnant mixing layer. The critical value of the perturbed Damkohler number, which indicates the region where the three different flame behaviors can be observed, is obtained. A stable simple limit cycle, in which two supercritical Hopf bifurcations exist, is found in a narrow range of Damkohler numbers. As the flame temperature is increased, the stable simple limit cycle disappears and an unstable limit cycle corresponding to subcritical Hopf bifurcation appears. The period-doubling bifurcation is found to occur in a certain range of Damkohler numbers and temperatures, which leads to extend the lower boundary of supercritical Hopf bifurcation.