• Title/Summary/Keyword: Diffusion Film

Search Result 715, Processing Time 0.033 seconds

A study on interfacial characteristics of Ni-Cr alloy by Nb content for Porcelain Fused to Metal Crown (금속소부도재관용 Ni-Cr 합금에 첨가된 Nb이 계면특성에 미치는 영향)

  • Kim, Chi-Young;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.97-104
    • /
    • 2005
  • The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens, which is 0.8mm in thickness, were fired at 1,000$^{\circ}C$ with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. It observed oxide film form of the fired specimens with optical microscope and scanning electron microscope (SEM), and chemical formation of them with energy disperse X-ray spectroscopy (EDX). The other specimens, which is 2mm in thickness, were fired at 1,000$^{\circ}C$ with air and vacuum in order to analyze the diffusion behaviors of alloy-porcelain interface by X-ray dot mapping. The results of this study were as follows: 1. The observation of microstructure of specimens by SEM showed that the more Nb content is high, the more much intermediate compound of rich Nb is observed. 2. The surface morphology of oxide film is most dense in 3% Nb. The heat treatment in air constitutes denser oxide film than heat treatment under vacuum. 3. The diffusion behavior of oxide layer by X-ray dot mapping showed that Si, Al of porcelain diffuse toward metal.

  • PDF

Role of Buffer Layer in Ba-Ferrite/α-Al2O3/SiO2 Magnetic Thin Films (Ba-페라이트/α-Al2O3/SiO2 자성박막에서 버퍼층의 역할)

  • Cho, Tae-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.283-286
    • /
    • 2006
  • We have studied the role of ${\alpha}-Al_{2}O_{3}$ buffer layer as a diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite $(1900-{\AA}-thick)/SiO_{2}$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_{2}O_{3}$ buffer layer ($110-{\AA}-thick$) in the interface of Ba-ferrite/$SiO_{2}$ thin film. During the annealing of Ba-ferrite/${\alpha}-Al_{2}O_{3}/SiO_{2}$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The magnetic properties, such as saturation magnetization and intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_{2}O_{3}$ buffer layer. Our study suggests that the ${\alpha}-Al_{2}O_{3}$ buffer layer act as a useful interfacial diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films.

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF

Plasma Process Effect and Selectivity Characteristics of Carbon Nanotube Film Humidity Sensor (CNT 습도센서의 플라즈마처리 효과와 선택성 특성)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.67-72
    • /
    • 2013
  • CNT(carbon nanotube) humidity sensors with plasma treated electrodes exhibit a much faster response time and a higher sensitivity to humidity, compared to untreated CNT and porous Cr electrodes. These results may be partially due to their percolated pore structure being more accessible for water molecules and for expending the diffusion of moisture to the polyimide sensing film, and partially due to the oxygenated surface of CNT films. This paper shows a plasma process effect and selectivity characteristics of CNT film humidity sensor.

  • PDF

A Study on Ion Exchange Method for Effective Ag Doping of Sputtering-Deposited CdTe Thin Film (스퍼터링 증착한 CdTe 박막의 효과적인 Ag 도핑을 위한 이온 교환법 연구)

  • Kim, Cheol-Joan;Park, Ju-Sun;Lee, Woo-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1169-1174
    • /
    • 2011
  • CdTe thin-film solar cell technology is well known that it can theoretically improve its conversion efficiency and manufacturing costs compared to the conventional silicon solar cell technology, due to its optical band gap energy (about 1.45eV) for solar energy absorption, high light absorption capability and low cost requirements for producing solar cells. Although the prior studies obtained the high light absorption, CdTe thin film solar cell has not been come up to the sufficient efficiency yet. So, doping method was selected for the improvement of the electrical characteristics in CdTe solar cells. Some elements including Cu, Ag, Cd and Te were generally used for the p-dopant as substitutional acceptors in CdTe thin film. In this study, the sputtering-deposited CdTe thin film was immersed in $AgNO_3$ solution for ion exchange method to dope Ag ions. The effects of immersion temperature and Ag-concentration were investigated on the optical properties and electrical characteristics of CdTe thin film by using Auger electron spectroscopy depth-profile, UV-visible spectrophotometer, and a Hall effect measurement system. The best optical and electrical characteristics were sucessfully obtained by Ag doping at high temperature and concentration. The larger and more uniform diffusion of Ag ions made increase of the Ag ion density in CdTe thin film to decrease the series resistance as well as mede the faster diffusion of light by the metal ions to enhance the light absorption.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

KF Post Deposition Treatment Process of Cu(In,Ga)Se2 Thin Film Effect of the Na Element Present in the Solar Cell Performance (KF 후열처리 공정시 CIGS 박막의 Na 원소 존재가 태양전지 셀성능에 미치는 영향)

  • Son, Yu-Seung;Kim, Won Mok;Park, Jong-Keuk;Jeong, Jeung-hyun
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.130-134
    • /
    • 2015
  • The high efficiency cell research processes through the KF post deposition treatment (PDT) of the $Cu(In,Ga)Se_2(CIGS)$ thin film has been very actively progress. In this study, it CIGS thin film deposition process when KF PDT 300 to the processing temperature, 350, $400^{\circ}C$ changed to soda-lime glass (SLG) efficiency of the CIGS thin film characteristics, and solar cell according to Na presence of diffusion from the substrate the effects were analyzed. As a result, the lower the temperature of KF PDT and serves to interrupt the flow of current K-CIGS layer is not removed from the reaction surface, FF and photocurrent is decreased significantly. Blocking of the Na diffusion from the glass substrate is significantly increased while the optical voltage, photocurrent and FF is a low temperature (300, $350^{\circ}C$) in the greatly reduced, and in $400^{\circ}C$ tend to reduce fine. It is the presence of Na in CIGS thin film by electron-induced degradation of the microstructure of CIGS thin film is expected to have a significant impact on increasing the hole recombination rate a reaction layer is formed of the K elements in the CIGS thin film surface.

Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with Light Diffusion Film (산광필름피복 시설 내 풋고추 생육)

  • Hee Chun;Jin Young Kim;Hyun Hwan Kim;Si Young Lee;Yooun Il Nam;Kyung Je Kim
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2001
  • During the growth of fruit vegetables such as pepper, cucumber and tomato, there are light deficiency under the plant canopy. This study was conducted to clarify the effect of light diffusion film on the stem growth, canopy, flowering and fruiting of green pepper in greenhouse. The transmittance of total solar radiation into greenhouse under woven and double films were 90% and 75% of polyethylene film. And the transmittance of photosynthetically active radiation into greenhouse under woven and double films were 96% and 81% of polyethylene film. However, the light diffusions under woven, double and polyethylene films were 46%, 31% and 9%, respectively. The plant height under polyethylene film covered greenhouse was 96.9% cm, taller than those under woven and double films by 6.5, 13.9 cm. And the third node length under woven film covered greenhouse was 8.6 cm, shorter than those under double and polyethylene films by 2.5, 5.7 cm. Also the first branch angle under woven film covered greenhouse was 61.0$^{\circ}$, larger than those under double and polyethylene films by 2.3, 10.3$^{\circ}$. But there was no clear difference in the node numbers among the covering materials. The rate of curved and sterile fruit under woven film covered greenhouse was smaller than those under double and polyethylene films by 4.6, 5.5% and 1.2, 3.6%. But the contents of vitamin C showed no difference among the covering materials and plant densities.

  • PDF

Analysis of Falling-film Generator in Ammonia-water Absorption System (암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석)

  • 김병주;손병후;구기갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF

Evaluation of Characteristics of Oxidized Thin LPCVD-$Si_{3}N_{4}$ Film (얇은 열산화-질화막의 특성평가)

  • 구경완;조성길;홍봉식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.9
    • /
    • pp.29-35
    • /
    • 1992
  • Dielectric thin film of N/O (Si$_{3}N_[4}/SIO_{2}$) for high density stacked dynamic-RAM cell was formed by LPCVD and oxidation(Dry & pyrogenic oxidation methods) of the top Si$_{3}N_[4}$ film. The thickness, structure and composition of this film were measured by ellipsometer, high frequency C-V meter, high resolution TEM, AES, and SIMS. The thickness limit of Si$_{3}N_[4}$ film in making thin N/O structure layer was 7nm. In this experiment, the film with thinner than 7nm was not thick enough as oxygen diffusion barrier, and oxygen punched through the film and interfacial oxidation occurred at the phase boundary between Si$_{3}N_[4}$ and polycrystalline silicon electrode.

  • PDF