• 제목/요약/키워드: Diffusion Combustor

검색결과 65건 처리시간 0.024초

Swirl이 있는 축대칭 연소기의 난류연소유동 해석 (Simulation of Axisymmetric Flows with Swirl in a Gas Turbine Combustor)

  • 신동신;임종수
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.55-66
    • /
    • 2000
  • A general purpose program for the analysis of flows in a gas turbine combustor is developed. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. A flow inside the C-type diffuser is simulated to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. A turbulent diffusion flame behind a bluff body is simulated for the combustion simulation. Simulated results show good agreement with experimental data. Finally, a turbulent flow with swirl in a gas turbine combustor was simulated. The results show two recirculating region and simulated velocity fields agree well with experimental data. The distance between two recirculating regions becomes shorter as swirl angle increases. Swirl angle changes angular momentum and streamlines in flow fields.

  • PDF

공기 다단 분무연소기의 NOx 발생특성에 관한 실험적 연구 (Investigation of NOx Formation Charateristics in Multi Air Staged Spray Combustor)

  • 김한석;안국영;김호근;백승옥
    • 연구논문집
    • /
    • 통권31호
    • /
    • pp.23-43
    • /
    • 2001
  • An experimental investigation on the reduction of nitrogen oxide emission from swirling, turbulent diffusion flames was conducted using multi air staged combustor, The combustor utilizes swirler to dampen fuel/air mixing, allowing an extended residence time for fuel pyrolysis and fuel-N conversion chemistry in an locally fuel-rich environment prior to burnout. This process also allow to reduce thermal NOx formation to lessen the temperature of reaction zone. The aerodynamic process therefore emulates the conventional staged combustion process, but without the need for the physically separate fuel-rich and -lean stages. Parametric studies on the ratios of each staged air and droplet size were carried out the feasibility of fuel/air mixing for low NOx combustion with diesel and pyridine mixed diesel fuel oil.

  • PDF

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • 제8권2호
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

난류확산화염의 화염구조와 연소특성에 관한 실험적 연구 (An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(III))

  • 장인갑;최경민;최병륜
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2326-2336
    • /
    • 1996
  • So most practical combustor is considered to the swirl flame, it is very important to examinate swirl flame structure and combustion characteristics. Recently, attention has been paid to the flame diagnostic by radical luminous intensity. For swirl flame structure and combustion characteristic, reverse flow boundary, temperature, ion current and radical luminous intensity were measured in the double-coaxial swirl combustor which was used principle of multi-annular combustor. This study had three experimental condition, S-type, C-type, SC-type. S-type and C-type flames were formed recirculation zone, but SC-type flame wasn't formed. C-type flame had two recirculation zone. The position with maximum value of ion current and CH-radical, temperature and OH-radical had similarity distribution almost. Therefore, it is possible that the macro structure of flame was measured by radical luminous intensity in the high intensity of turbulent combustion field which was formed by swirl.

空氣밸브型 脈動燃燒器의 特性에 관한 實驗的 硏究 (An experimental study of the overall characteristics in an aero-valved pulsating combustor)

  • 오상헌;최병륜;임광열
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.271-278
    • /
    • 1987
  • 본 논문에서는 공기밸브형 진동연소기에 관한 이해를 더 증진시키기 위해서 기본적인 공기밸브형 진동연소기를 제작해서 압력진동 및 발생되는 소음특성, 작동주 파수, 그리고 연소특성에 관해 실험적 고찰을 행했다.

고온 미소농도구배 조건에서의 에지화염 강도 변화에 관한 실험적 기초 연구 (Basic Experimental Study of the Edge-Flame Intensity Variation at High Temperature and with Small Fuel-Concentration Gradient)

  • 이민정;김남일
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.633-640
    • /
    • 2011
  • 본 연구에서는 고온의 미소농도구배 조건에서의 에지화염의 안정화 및 화염 강도 변화를 실험적으로 관찰하였다. 실험 연소기는 크게 혼합기가 투입되는 슬롯과 석영 채널 및 채널 내부 가열을 위한 추가적인 예혼합 연소기로 구성되어 있다. 실험의 정확성을 위해 각 경계 조건에 대한 정량적인 검증 절차가 수행되었다. 결론적으로 연료 농도 구배의 정량적인 제어와 질소 희석비율을 조절하여 고온의 조건에서도 에지화염을 임의의 위치에 안정화 시킬 수 있었다. 에지화염 내부에 존재하는 확산화염의 화염 강도가 채널 내부의 온도증가에 따라 증가하고 질소의 희석비율 증가에 따라 감소하는 것을 보였다. 연료에 따른 화염 강도 변화를 살펴본 결과 프로판의 경우가 메탄에 비해 강도 변화율이 큰 것을 알 수 있었다.

Structural Characteristics of Turbulent Diffusion Flame Combusted with Simulated Coal Syngas

  • Park, Byung-Chul;Kim, Hyung-Taek;Chun, Won-Gee
    • 에너지공학
    • /
    • 제11권4호
    • /
    • pp.350-358
    • /
    • 2002
  • The present work determined the flame structure characteristics of coal syngas combusted inside swirl burners with various nozzle types. Fuel nozzle types are largely classified into two groups of axial and tangential. Experiments were carried out for investigating the effects of fuel nozzle geometry, fuel composition ratio, heating rate, excess air, and degree of swirl on the turbulent diffusion flame structure. To determine the characteristics of the flame structure, axial type fuel nozzle diameter of laboratory-scale combustor is varied to 1.23, 1.96, and 2.95 ㎜ and the direction of tangential type nozzles are varied to radial, clockwise, and counter-clockwise. The comparison of the experimental results was performed to understand functional parameters relating the flame structure. Data analysis showed that the vertical straight flame height generally decreased with increasing swirl number and decreasing axial type nozzle diameter. Flame height established with tangential type nozzle is 3 times shorter than that with vertical type. The flame structures among the 3 different tangential fuel nozzles relatively showed no particular difference. By increasing the heating rate, the width of flame increased generally in both vertical and tangential flame. Within the present experimental parameters of the investigation, flame structure is mainly depends on the nozzle type of the combustor. The visually investigated flame lengths are confirmed through the analysis of temperature profile of each flame.

반밀폐 연소공간 내 동축관 형상에 따른 DME-공기 확산화염의 안정화 특성 (Stabilization Characteristics of DME-Air Diffusion Flames Depending on the Configuration of the Fuel-Air Tubes in Half Closed Combustion Spaces)

  • 김고태;김남일
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.916-923
    • /
    • 2009
  • The effects of configuration of fuel and air tubes on the flame stabilization were experimentally investigated in half-closed combustors. Flame behaviors and stabilities of methane, propane, and DME flames were compared by changing tube diameters and the locations of the fuel and air tubes. It was found that flammability limits are significantly affected by the outlet boundary condition, which disturbs compositions of burned and unburned mixtures near the flame base. And it was found that there exist critical inner tube heights, over which flame stability is determined only by the fuel flow rate. Conclusively, flame stabilization is governed by the flame propagation velocity in an ordinary mixing flow and the non-uniform mixture concentration in the combustion space which is affected by flow recirculation and the combustor configuration. The compositions of $NO_x$ and CO were compared to know basic characteristics of methane, propane, and DME flames.

다중 분사기가 장착된 초임계 연소기 난류연소해석 (Numerical analysis of turbulent combustion in Supercritical combustor with multi-injector)

  • 전태준;박태선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.803-810
    • /
    • 2017
  • 초임계 조건에서의 연소반응에서는 액체산소가 초임계 상태로 천이되며 스도보일링과 급격한 물성치변화를 발생시킨다. 이때 초임계 상태에서 작동하는 분사기의 연소반응은 급격한 밀도차로 인한 난류확산에 의해 지배되며, 따라서 스도보일링과 함께 발생하는 확산유동에 대한 연구가 필요하다. 많은 연구자들에 의해 초임계 연소해석에서 발생하는 이 현상들에 대한 연구가 진행되었지만 다양한 변수들에 의한 사례연구가 부족한 상태이다. 본 연구에서는 초임계 압력조건에서 산화제-연료비(O/F)와 연소기 직경, 리세스비를 통해 재순환유동 및 액체산소코어 길이에 변화를 주어 이로 인한 유동구조 및 화염구조의 변화를 수치적으로 연구하였다.

  • PDF

선회 확산버너에서 산소부화가 연소장에 미치는 영향 (Effect of Oxygen Enrichment in a Swirling Diffusion Gas Burner)

  • 이용후;이진석;이우섭;이도형
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.34-41
    • /
    • 2002
  • To investigate the combustion characteristics of a swirling diffusion gas burner with oxygen enrichment, mean temperature, CO, $CO_2$, and HC concentrations were measured at various oxygen enrichment conditions. According to the results, the flame temperature increased and the region of high temperature was expanded with increasing oxygen concentration. The $CO_2$ concentrations increased, while the CO concentrations decreased in proportion to the increase of oxygen concentration. On the other hand, the HC concentrations were decreased and this tendency was very strong at the downstream of the combustor.

  • PDF