• 제목/요약/키워드: Diffuser wall

검색결과 65건 처리시간 0.029초

국소거칠기와 난류 경계층과의 상호작용 (Interaction of Local Roughness and Turbulent Boundary Layer)

  • 문철진
    • 수산해양기술연구
    • /
    • 제27권2호
    • /
    • pp.120-124
    • /
    • 1991
  • 이상의 결과를 정리하면 다음과 같이 요약할 수 있다. (1)Karman의 적분 방정식에 미소 거칠기 영향을 고려함으로서 디퓨져 닥트 표면의 경계층 계산에 응용한 결과 모멘트 적분법 및 실험치와의 비교에서 개선된 결과임이 확인되었다. (2) 국소 거칠기의 효과를 주는 방법으로는 Cole의 벽 및 와 법칙에 Clauser의 거칠기 함수와, 압력 기울기를 고려한 부가 형상계수 값으로 적분 방정식에 응용할 수 있다. (3) 국소 거칠기 분포에 의하여 경계층 특성을 교란시켜 표면 마찰력 계수를 줄일 수 있어 마찰력 손실을 줄일 수 있는 방안이 제시되었다.

  • PDF

유로단면이 변하는 수평관 내 기포류에서의 기포 및 액체 속도 (Bubble and Liquid Velocities for a Bubbly Flow in an Area-Varying Horizontal Channel)

  • 찬탄짬;김병재;박현식
    • 한국가시화정보학회지
    • /
    • 제15권3호
    • /
    • pp.20-26
    • /
    • 2017
  • The two-fluid equations are widely used to simulate two-phase flows in a nuclear reactor. For the two-fluid momentum equation, the wall and interfacial drag terms play an important role in predicting a two-phase flow behavior. Since the bubble density is much smaller than the water density, the bubble accelerates faster than the liquid in a nozzle. As a result, the bubble phase becomes faster than the liquid phase in the nozzle. In contrast, the opposite phenomena occur in the diffuser. The purpose of our study is to experimentally show these behaviors in an area-varying channel such as nozzle and diffuser. Experiments were made of turbulent bubbly flows in an area-varying horizontal channel. The velocities of the bubble and liquid phases were measured by the PIV technique. It was shown that the two-phase velocities were no longer close to each other in the area-varying regions. The bubble was faster than the liquid in the nozzle; in contrast, the bubble was slower than the liquid in the diffuser. Code simulations were also performed using the MARS code. By replacing the original wall drag model in the MARS code with Kim (1)'s wall drag partition model, we obtained the simulation results being consistent with experimental observations.

미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구 (A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble)

  • 유성훈;박상희;강우진;한승욱
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.

Large Eddy Simulation of a High Reynolds Number Swirling Flow in a Conical Diffuser

  • Duprat, Cedric;Metais, Olivier;Laverne, Thomas
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.346-352
    • /
    • 2009
  • The objective of the present work is to improve numerical predictions of unsteady turbulent swirling flows in the draft tubes of hydraulic power plants. We present Large Eddy Simulation (LES) results on a simplified draft tube consisting of a straight conical diffuser. The basis of LES is to solve the large scales of motion, which contain most of the energy, while the small scales are modeled. LES strategy is here preferred to the average equations strategies (RANS models) because it resolves directly the most energetic part of the turbulent flow. LES is now recognized as a powerful tool to simulate real applications in several engineering fields which are more and more frequently found. However, the cost of large-eddy simulations of wall bounded flows is still expensive. Bypass methods are investigated to perform high-Reynolds-number LES at a reasonable cost. In this study, computations at a Reynolds number about 2 $10^5$ are presented. This study presents the result of a new near-wall model for turbulent boundary layer taking into account the streamwise pressure gradient (adverse or favorable). Validations are made based on simple channel flow, without any pressure gradient and on the data base ERCOFTAC. The experiments carried out by Clausen et al. [1] reproduce the essential features of the complex flow and are used to develop and test closure models for such flows.

원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구 (Numerical Study on Turbulent Flow in a Conical Diffuser)

  • 강신형;최영석
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1971-1978
    • /
    • 1992
  • 본 연구에서는 원형 파이프에 원추형 디퓨져가 연결된 덕트 내의 유동장에 대 하여 Launder-Sharma의 저 레이놀즈수 k-.epsilon. 난류모델을 이용하여 수치해석을 수행하였 으며, 수치해석 방법으로는 타원형 방법을 사용하였으며, 앞으로 일반적인 단면의 곡 관이나 스크롤 내부 유동 등의 연구 수행을 감안하여 지배방정식을 일반 비직교 좌표 계로 변환하여 계산을 수행하였다.

초음속 디퓨져 시동 과정에 관한 수치 모사; 초기 진공도에 따른 디퓨져 내부 충격파 구조의 발달 과정 (Numerical simulation on starting transients in supersonic exhaust diffuser; evolution of internal shock structures with different initial cell pressures)

  • 박병훈;임지환;윤응섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.46-55
    • /
    • 2005
  • For the sea-level performance test of rocket motor designed to operate in the upper atmosphere, ejectors with no induced secondary flow are generally used, which serves dual purposes of evacuating the test cell and performing as a supersonic exhaust diffuser (SED). The main concern of this research is to simulate starting transients in order to visualize evolution of internal shock structures in SED with different initial cell (vacuum chamber) pressures. RANS code with low Reynolds $k-\varepsilon$ turbulence model was employed for these computations. Numerical results were compared with the pressure measurements previously performed [Proceedings of 2004 Annual Conference, KIMST], and showed good agreements with pressure-time history of measured data. In the case of low vacuum chamber pressure, abrupt impingement of the under-expanded supersonic jet from the nozzle onto the diffuser wall was observed, whereas initial impingement point was located downstream and moved slowly upstream in the case of non-vacuum chamber pressure. In spite of initially dissimilar evolution of shock structures, iso-mach contour revealed that the steady shock structures had little difference except the location of flow separation and normal shock.

  • PDF

라인-디퓨저의 ADPI특성에 관한 연구 (ADPI Characteristics of a Line-Diffuser)

  • 이재헌;조영진;강석윤;오명도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.958-964
    • /
    • 2001
  • It is difficult to apply a conventional selection guide for diffusers when the diffuser is installed in a perimeter zone, because the ADPI(Air Diffusion Performance Index) vs. T/L(Throw/Length) curve listed in conventional guide does not consider the perimetric heating load. The objective of this study is to evaluate the effect of the perimetric heating load on the ADPI and to propose a selection guide for proper diffuser when perimetric heating load exists. The velocity and temperature distributions and the ADPI value are obtained numerically with various heat load ratios and air flow rates. The ADPI values by numerical result were compared with existing experimental data to verify the method for evaluation of ADPI proposed in present study. In case of a high side wall diffuser, the ADPI decreased with increases of the flow rate on every heat load ratio of present study except 0.75. Also, the ADPI vs. T/L curves have been proposed for the heat load ratios of 0.25, 0.5, 0.75 to guarantee comport thermal environment when diffusers are installed in perimeter zone.

  • PDF

2차목에 의한 고고도 모사용 초음속 디퓨져 시동성능 향상 (Improvement of Starting Performance in Supersonic Exhaust Diffuser with Second Throat for High Altitude Simulation)

  • 박성현;박병훈;임지환;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.321-327
    • /
    • 2008
  • 초음속 디퓨져를 사용하는 고도모사 장치에서 기존에 연구되었던 일정단면적 형태를 개선해 2차 목 형태 디퓨져의 효과를 고찰하였다. 기 수행 된 일정단면적 디퓨져 정상상태 해석 결과 및 공압시험 데이터를 바탕으로 본 연구의 해석방법을 검증하고, 2차목에 의한 효과를 정량화시키기 위해 노즐전압력과 2차목 면적에 따른 시동성능과 진공챔버압력 변화에 관하여 해석하였다. 일정단면적 디퓨져 내부 벽면 및 중심축을 따른 압력데이터 비교에서 일치하는 거동을 확인했으며, 2차목의 사용에 의해 시동을 위한 노즐 전압력이 현저히 낮아짐을 알 수 있었다. 저팽창비 노즐 사용으로 인하여 2차목에 의한 진공챔버 내 압력 변화는 거의 없음을 관찰하였다.

  • PDF

고도모사용 2차목 디퓨져 시동을 위한 디퓨져 팽창비 설계기법에 관한 연구 (Investigation concerning Design Method of the Diffuser Expansion Ratio Commanding a Starting of the Second Throat Exhaust Diffuser for High Altitude Simulation)

  • 박성현;박병훈;임지환;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.299-304
    • /
    • 2008
  • 이차유동이 없는 초음속 디퓨져를 사용하는 고도모사용 지상시험장치의 주요 형상변수인 디퓨져 팽창비 최적설계를 위해 시동특성 측면에서 수치해석을 수행하였다. 기수행 연구에서 검증된 1차원 설계와 실험 결과와의 시동압력 차이 20$\sim$25%를 적용해, 본 연구에서는 최대추력노즐 사양에 대해 시동 가능한 디퓨져 팽창비$(A_d/A_t)$ 범위를 예측했다. 이 구간에서 팽창비 증가에 따른 진공챔버압력의 변화는 미미했으며, 실제 로켓모터의 시동여부 및 연소에 의한 유동정상화 시간을 고려해 팽창비가 결정되었다. 또한, 역설계를 통해 디퓨져 특성곡선을 그려본 결과, 최소(최적) 시동압력은 40기압으로 1차원 설계에 20%를 적용한 시동압력 39.6기압과 거의 일치하는 것으로 나타났다.

  • PDF

Study of different flexible aeration tube diffusers: Characterization and oxygen transfer performance

  • Hongprasith, Narapong;Dolkittikul, Natchanok;Apiboonsuwan, Kamolnapach;Pungrasmi, Wiboonluk;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.233-240
    • /
    • 2016
  • The research aims to study the different flexible rubber tube diffusers used in urban wastewater treatment processes and aquaculture systems. The experiment was conducted in small-scale aeration tank with different physical properties of the tubes that were used as aerators. The volumetric mass transfer coefficient ($k_La$), oxygen transfer efficiency (OTE) and aeration efficiency (AE) were measured and determined to compare the diffusers. Moreover, the bubble hydrodynamic parameters were analyzed in terms of bubble diameter ($d_B$) and rising velocity ($U_B$) by a high speed camera (2,000 frames/s). Then the interfacial area (a) and liquid-side mass transfer coefficient ($k_L$) can be calculated. The physical properties (tube wall thickness, tensile strength, orifice size, hardness and elongation) have been proven to be the key factor that controls the performance (kLa and OTE). The effects of hardness and elongation on bubble formation, orifice size and a-area were clearly proved. It is not necessary to generate too much fine bubbles to increase the a-area: this relates to high power consumption and the decrease of the kL. Finally, the wall thickness, elongation and hardness associated of the flexible tube diffuser (tube No. 12) were concluded, to be the suitable properties for practically producing, in this research.