• Title/Summary/Keyword: Diffractive Optics

Search Result 58, Processing Time 0.025 seconds

Two-dimensional Laser Drilling Using the Superposition of Orthogonally Polarized Images from Two Computer-generated Holograms

  • Lee, Hwihyeong;Cha, Seongwoo;Ahn, Hee Kyung;Kong, Hong Jin
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.451-457
    • /
    • 2019
  • Laser processing using holograms can greatly improve processing speed, by spatially distributing the laser energy on the target material. However, it is difficult to reconstruct an image with arrays of closely spaced spots for laser processing, because the specklelike interference pattern prevents the spots from getting close to each other. To resolve this problem, a line target was divided in two, reconstructed with orthogonally polarized beams, and then superposed. Their optical reconstruction was performed by computer-generated holograms and a pulsed laser. With this method, we performed two-dimensional (2D) laser drilling of polyimide film, with a kerf width of $20{\mu}m$ and a total processing length of 20 mm.

Design and Fabrication of Binary Diffractive Optical Elements for the Creation of Pseudorandom Dot Arrays of Uniform Brightness (균일 밝기 랜덤 도트 어레이 생성을 위한 이진 회절광학소자 설계 및 제작)

  • Lee, Soo Yeon;Lee, Jun Ho;Kim, Young-Gwang;Rhee, Hyug-Gyo;Lee, Munseob
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • In this paper, we report the design and fabrication of binary diffractive optical elements (DOEs) for random-dot-pattern projection for Schlieren imaging. We selected the binary phase level and a pitch of 10 ㎛ for the DOE, based on cost effectiveness and ease of manufacture. We designed the binary DOE using an iterative Fourier-transform algorithm with binary phase optimization. During initial optimization, we applied a computer-generated pseudorandom dot pattern of uniform intensity as a target pattern, and found significant intensity nonuniformity across the field. Based on the evaluation of the initial optimization, we weighted the target random dot pattern with Gaussian profiles to improve the intensity uniformity, resulting in the improvement of uniformity from 52.7% to 90.8%. We verified the design performance by fabricating the designed binary DOE and a beam projector, to which the same was applied. The verification confirmed that the projector produced over 10,000 random dot patterns over 430 mm × 430 mm at a distance of 5 meters, as designed, but had a slightly less uniformity of 84.5%. The fabrication errors of the DOE, mainly edge blurring and spacing errors, were strong possibilities for the difference.

Ray-optical determination of the coupling coefficients of waveguide gratings by use of the rigorous coupled wave theory (회절격자구조를 갖는 도파로 소자의 엄밀한 광선광학적 결합계수 계산)

  • 박선택;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.348-353
    • /
    • 1999
  • Ray-optics approach based on the rigorous coupled wave theory, called by the rigorous ray-optics method (RROM), is developed for the calculation of couling coefficients of waveguide grating devices. The coupling coefficients of several grating structures, such as rectangular, sinusoidal, triangle, and trapezoidal shapes, are determined by the RROM, and they are compared with those obtained by conventional methods of the ray-optics method (ROM) and the coupled mode method (CMM). In the case of rectangular gratings, the coupling coefficients is evaluated in detail by various depths and duty-cycles of the grating. We have found that the RROM gives more exact solutions for the coupling coefficients of even arbitrary shapes of diffractive waveguide grating devices than the other conventional methods.

  • PDF

3-Dimensionally Integrated Planar Optics for 100 Gb/s Optical Packet Address Detection

  • Song, Seok-Ho;Lee, El-Hang
    • ETRI Journal
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1995
  • We propose a novel planar optical interconnection scheme for 100 Gb/s optical packet address detection, which consists of waveguide grating couplers and a diffractive microlens integrated on a glass substrate 3-dimensionally. Length and duty cycle of the grating couplers have been determined on the bases of the ray-optic propagation-mode analysis in a slab waveguide and of the rigorous coupled-wave diffraction analysis for out-coupled radiation-modes. The 3-dimensionally integrated planar optics makes it possible to connect each address bit-signals of $TE_ 0-waveguide$ mode to the detector with a power uniformity of 6.4 % and a total coupling efficiency of 72.3 %.

  • PDF

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

Design of phase-only diffractive pattern elements using a two-stage iterative Fourier transform algorithm (2단계 iterative Fourier transform 알고리즘을 이용한 위상형 회절무늬소자 설계)

  • 정필호;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • A two-stage iterative Fourier transform algorithm, based on hybrid input-output algorithm and new Pnoise algorithm, is used to design continuous and quantized phase-only diffractive pattern elements which produce arbitrary given intensity patterns via Fraunhofer diffraction. Numerical results for two $128\times128$ binary patterns and two grayscale patterns are compared with those of other algorithms. It is found that the algorithm yields better signal-to-noise ratio and even better uniformity with slightly lower diffraction efficiency than other algorithms. We investigated the dependence of performance on parameters used in the algorithm, size of noise region, and the number of phase levels for quantized elements. In the case of quantized phase elements, the size of noise region plays a greater role in determining the performance of the algorithm than given intensity pattern itself. tself.

  • PDF

Slim Mobile Lens Design Using a Hybrid Refractive/Diffractive Lens (굴절/회절 하이브리드 렌즈 적용 슬림 모바일 렌즈 설계)

  • Park, Yong Chul;Joo, Ji Yong;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.281-289
    • /
    • 2020
  • This paper reports a slim mobile lens design using a hybrid refractive/diffractive optical element. Conventionally a wide field of view (FOV) camera-lens design adopts a retrofocus type having a negative (-) lens at the forefront, so that it improves in imaging performance over the wide FOV, but with the sacrifice of longer total track length (TTL). However, we chose a telephoto type as a baseline design layout having a positive (+) lens at the forefront, to achieving slimness, based on the specification analysis of 23 reported optical designs. Following preliminary optimization of a baseline design and aberration analysis based on Zernike-polynomial decomposition, we applied a hybrid refractive/diffractive element to effectively reduce the residual chromatic spherical aberration. The optimized optical design consists of 6 optical elements, including one hybrid element. It results in a very slim telephoto ratio of 1.7, having an f-number of 2.0, FOV of 90°, effective focal length of 2.23 mm, and TTL of 3.7 mm. Compared to a comparable conventional lens design with no hybrid elements, the hybrid design improved the value of the modulation transfer function (MTF) at a spatial frequency of 180 cycles/mm from 63% to 71-73% at zero field (0 F), and about 2-3% at 0.5, 0.7, and 0.9 fields. It was also found that a design with a hybrid lens with only two diffraction zones at the stop achieved the same performance improvement.

Development of a soft X-ray microscopy system for Biological Application (생물의료용 연 X-선 현미경 시스템 개발)

  • Kim, Gyeong-U;Gwon, Yeong-Man;Kim, Gyu-Gyeom;Min, Jong-Hwan;Park, Jeong-Gwon;Im, Jong-Hyeok;Nam, Gi-Yong;Yun, Gwon-Ha;Min, Jin-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.02a
    • /
    • pp.264-265
    • /
    • 2005
  • In this paper the conceptual design and development of a compact vertical type soft x-ray microscope is described. This x-ray microscope operates in the water window wavelength region(2.3 ${\sim}$ 4.4nm), where natural contrast between carbon(protein) and oxygen(water) allows imaging of unstained biological material their natural, hydrated environment. Until now, operational x-ray microscopes are based on synchrotron radiation sources, which limit their accessibility. Many biologists would benefit from having the x-ray microscope as a tool among other tools in their own laboratory, For this purpose we introduced the compact vertical type soft X-ray microscope with 50 nm resolution for biomedical application. The compact vertical type soft x-ray microscope is based on a laser plasma x-ray source, doubled ellipsoidal condenser reflective optics, diffractive zone plate optics and MCP coupled with CCD to record an x-ray image.

  • PDF

Point Spread Function of Optical Systems Apodized by Semicircular Array of 2D Aperture Functions with Asymmetric Apodization

  • Reddy, Andra Naresh Kumar;Sagar, Dasari Karuna
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.83-88
    • /
    • 2014
  • The simultaneous suppression of sidelobes and the sharpening of the central peak in the process of diffraction pattern detection based on asymmetric apodization have been investigated. Asymmetric apodization is applied to a semicircular array of two-dimensional (2D) aperture functions, which is a series of 'coded-phase arrays of semicircular rings randomly distributed over the central circular region of a pupil function' and is similar to that used in the field of diffractive optics. The point spread function (PSF) of an imaging system with asymmetric apodization of the discrete type has been found to possess a good side with suppressed sidelobes, whereas its bad side contains enhanced sidelobes. Further, the diffracted field characteristics are obtained in the presence of these aperture functions. Asymmetric apodization is helpful in improving the performance of the optical gratings or 2D arrays used in real-time imaging techniques.

Beyond the Grating Equation: Light Patterns in the Era of Diffractive Optics

  • O′Shea, D.C.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.1-1
    • /
    • 2000
  • The interaction of light with periodic patterns generates beautiful color patterns and interesting applications. The basic equation for understanding this phenomena is the grating equation. It tells us the angles, relative to a perpendicular to a grating with a specific period, into which light of a specific wavelength will be diffracted. But what it does not tell us is how much light will be directed into the various "orders" of the grating. It was found that by controlling the shape of the diamond point used to cut the periodic structure into the substrate, a traditional grating could be made to direct most of the light diffracted from it into a single order. This type of grating is referred to as a "blazed" grating. (omitted); grating. (omitted)

  • PDF