• Title/Summary/Keyword: Diffie-Hellman problem

Search Result 66, Processing Time 0.022 seconds

Proxy Signature, ID-based Partially Blind Signature and Proxy Partially Blind Signature using Bilinear-pairing (Bilinear-pairing을 이용한 대리서명, ID 기반 부분은닉서명과 대리부분은닉서명 방식)

  • Kim Hyuniue;Yeo Sanghee;Won Dongho
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.545-555
    • /
    • 2004
  • Proxy signature scheme allow a designated proxy person to sign a message on behalf of the original signer. Partially blind signature scheme allows the signer to insert non-removable common information into his blind signature. Proxy signature and partially blind signature are very important technologies in secure e-commerce. In this paper we propose new proxy signature scheme and ID-based partially blind signature scheme using bilinear pairing. further combining them, we propose a proxy partially blind signature scheme. The security of our schemes relies on the hardness of Computational Diffie-Hellman Problem. If we removing common information form propose ID-based partially blind signature scheme and proxy partially blind signature scheme, then they become variants of ID-based blind signature scheme and proxy blind signature scheme of Zhangs respectively.

Lightweight Hardware Design of Elliptic Curve Diffie-Hellman Key Generator for IoT Devices (사물인터넷 기기를 위한 경량 Elliptic Curve Diffie-Hellman 키 생성기 하드웨어 설계)

  • Kanda, Guard;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.581-583
    • /
    • 2017
  • Elliptic curve cyptography is relatively a current cryptography based on point arithmetic on elliptic curves and the Elliptic Curve Discrete Logarithm Problem (ECDLP). This discrete logarithm problems enables perfect forward secrecy which helps to easily generate key and almost impossible to revert the generation which is a great feature for privacy and protection. In this paper, we provide a lightweight Elliptic Curve Diffie-Hellman (ECDH) Key exchange generator that creates a 163 bit long shared key that can be used in an Elliptic Curve Integrated Encryption Scheme (ECIES) as well as for key agreement. The algorithm uses a fast multiplication algorithm that is small in size and also implements the extended euclidean algorithm. This proposed architecture was designed using verilog HDL, synthesized with the vivado ISE 2016.3 and was implemented on the virtex-7 FPGA board.

  • PDF

A Novel Key Sharing Fuzzy Vault Scheme

  • You, Lin;Wang, Yuna;Chen, Yulei;Deng, Qi;Zhang, Huanhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4585-4602
    • /
    • 2016
  • A novel key sharing fuzzy vault scheme is proposed based on the classic fuzzy vault and the Diffie-Hellman key exchange protocol. In this proposed scheme, two users cooperatively build their fuzzy vault for their shared key using their own biometrics. Either of the users can use their own biometrics to unlock the fuzzy vault with the help of the other to get their shared key without risk of disclosure of their biometrics. Thus, they can unlock the fuzzy vault cooperatively. The security of our scheme is based on the security of the classic fuzzy vault scheme, one-way hash function and the discrete logarithm problem in a given finite group.

An Efficient Multi-Signature Scheme for Shared Data in a Cloud Storage (클라우드 스토리지의 공유 데이터에 대한 효율적 다중 서명 기법)

  • Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.967-969
    • /
    • 2013
  • In this paper, we propose an efficient mult-signature scheme based on a bilinear mapping for shared data in the cloud and prove the security of the proposed scheme using the difficulty of the computational Diffie-Hellman problem. For verification, the scheme is using the sum of the hash values of stored data rather than the entire data, which makes it feasible to reduce the size of the downloaded data.

Quorum based Peer to Peer Key Sharing Protocol over Wireless Sensor Networks

  • Yang, Soong-Yeal;Won, Nam-Sik;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.445-448
    • /
    • 2008
  • The key establishment between nodes is one of the most important issues to secure the communication in wireless sensor networks. Some researcher used the probabilistic key sharing scheme with a pre-shared key pool to reduce the number of keys and the key disclosure possibility. However, there is a potential possibility that some nodes do not have a common share in the key pool. The purpose of this paper is to devise a peer to peer key sharing protocol (PPKP) based on Quorum system and Diffie-Hellman key exchange scheme (DHS). The PPKP establishes a session key by creating a shared key using the DHS and then scrambles it based on Quorum system to secure that. The protocol reduces the number of necessary keys than the previous schemes and could solve the non-common key sharing possibility problem in the probabilistic schemes.

  • PDF

Message Expansion of Homomorphic Encryption Using Product Pairing

  • Eom, Soo Kyung;Lee, Hyang-Sook;Lim, Seongan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • The Boneh, Goh, and Nissim (BGN) cryptosytem is the first homomorphic encryption scheme that allows additions and multiplications of plaintexts on encrypted data. BGN-type cryptosystems permit very small plaintext sizes. The best-known approach for the expansion of a message size by t times is one that requires t implementations of an initial scheme; however, such an approach becomes impractical when t is large. In this paper, we present a method of message expansion of BGN-type homomorphic encryption using composite product pairing, which is practical for relatively large t. In addition, we prove that the indistinguishability under chosen plaintext attack security of our construction relies on the decisional Diffie-Hellman assumption for all subgroups of prime order of the underlying composite pairing group.

An Algorithm for Secure key Exchange based on the Mutual Entity Authentication (상호 실체인증 기능을 갖는 안전한 키 교환 알고리즘)

  • Kang, Chang-Goo;Choi, Yong-Rak
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2083-2090
    • /
    • 1998
  • In this paper, we propose two authentication exchange schemes which combine public key-based mutual authentication with a Diffie-Hellman key derivation exchange. The security of key exchange of the proposed schemes depends on the discrete logarithm problem. The ,securtly of the etity authentication depends on that of the signature mechanism to be used in the proposed scheme. In comparisun with the Kerberos, X.509 exchanges, and ISO 3-way authentication protocol, the proposed schemes are not only simple and efficient. but also are resistant to the full range of replay and interceptiun attacks.

  • PDF

The Secure and Efficient Key Agreement Protocol with Direct Authentication (직접적 인증을 제공하는 안전하고 효율적인 키동의 프로토콜)

  • Lee, Hyung-Kyu;Lee, Kyung-Ho;Cha, Young-Tae;Sim, Joo-Geol;Won, Dong-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3613-3621
    • /
    • 1999
  • In this paper, we analyzed the suity of key distribution protocol based on discrete logarithm for the purpose of designing key distribution protocol systematically. We also propose the efficient key agreement protocol with direct authentication. In comparison with Station-to-Station protocol, it provides the direct authentication using the Diffie-Hellman problem without signature.

  • PDF

Implementation of Bluetooth Secure Simple Pairing (SSP) using Elliptic Curve Cryptography (ECC)

  • Alfarjat, Ahmad Hweishel A.;Hanumanthappa, J.;Hamatta, Hatem S.A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.60-70
    • /
    • 2021
  • In this paper we study the problem of implementation of security issues of blue tooth, especially secure simple pairing, with the help of an efficient four user authenticated key (4UAK) for an elliptic curve cryptography (ECC). This paper also deals with the design, implement and performance evaluation of secure simple pairing (SSP) using an elliptic curve cryptography, such as Diffie Hellman protocol when four users are involved. Here, we also compute the best, worst and average case step counts (time complexities). This work puts forth an efficient way of providing security in blue tooth. The time complexity of O(n4) is achieved using Rabin Miller Primality methodology. The method also reduces the calculation price and light communication loads.

ANALYSIS OF THE STRONG INSTANCE FOR THE VECTOR DECOMPOSITION PROBLEM

  • Kwon, Sae-Ran;Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.245-253
    • /
    • 2009
  • A new hard problem called the vector decomposition problem (VDP) was recently proposed by Yoshida et al., and it was asserted that the VDP is at least as hard as the computational Diffie-Hellman problem (CDHP) under certain conditions. Kwon and Lee showed that the VDP can be solved in polynomial time in the length of the input for a certain basis even if it satisfies Yoshida's conditions. Extending our previous result, we provide the general condition of the weak instance for the VDP in this paper. However, when the VDP is practically used in cryptographic protocols, a basis of the vector space ${\nu}$ is randomly chosen and publicly known assuming that the VDP with respect to the given basis is hard for a random vector. Thus we suggest the type of strong bases on which the VDP can serve as an intractable problem in cryptographic protocols, and prove that the VDP with respect to such bases is difficult for any random vector in ${\nu}$.