• Title/Summary/Keyword: Diffie-Hellman primitive

Search Result 8, Processing Time 0.023 seconds

Diffie-Hellman Based Asymmetric Key Exchange Method Using Collision of Exponential Subgroups (지수연산 부분군의 충돌을 이용한 Diffie-Hellman 기반의 비대칭 키 교환 방법)

  • Song, Jun Ho;Kim, Sung-Soo;Jun, Moon-Seog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.39-44
    • /
    • 2020
  • In this paper, we show a modified Diffie-Hellman key exchange protocol that can exchange keys by exposing only minimal information using pre-computable session key pairs. The discrete logarithm problem, which provides the safety of existing Diffie-Hellman and Diffie-Hellman based techniques, is modified to prevent exposure of primitive root. We prove the algorithm's operation by applying the actual value to the proposed scheme and compare the execution time and safety with the existing algorithm, shown that the security of the algorithm is improved more than the product of the time complexity of the two base algorithms while maintaining the computation amount at the time of key exchange. Based on the proposed algorithm, it is expected to provide a key exchange environment with improved security.

Efficient Key Agreement Protocols using Proxy Server (Proxy 서버를 이용하는 효율적인 키 분배 프로토콜)

  • Yang Hyung-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.29-36
    • /
    • 2005
  • A key agreement protocol is the most important part to establish a secure cryptographic system and the effort to standardize the key agreement protocols is in rapid progress. Several efficient and secure key agreement protocols have been proposed so far since Diffie-Hellman proposed a public key agreement system in 1976. But, since Diffie-Hellman based key agreement protocols need a lot of computation to establish the session key, they are not suitable for wireless Internet environment. In this paper, we propose the efficient key agreement protocol using Proxy server. The Proposed Protocol gives the security equivalent to that the Diffie-Hellman based Protocol and the computation work of mobile user can be decreased using proxy server.

A New Forward-Secure Signature Scheme based on GDH groups (Gap Diffie-Hellman 군에 기반한 전방향 안전성을 갖는 서명 기법)

  • 강보경;박제홍;한상근
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.147-157
    • /
    • 2003
  • We often use cryptographic systems on small devices such as mobile phones, smart cards and so on. But such devices are delicate against the tlreat of key exposure of secret keys. To reduce the damage caused by exposure of secret keys stored on such devices, the concept of forward security is introduced. In this Paper, we present a new forward secure signature scheme based on Gap Diffie-Hellman groups. Our scheme achieves security against chosen-message attacks under the computational Diffie-Hellman assumption in the random oracle model.

Certificate-Based Encryption Scheme without Pairing

  • Yao, Ji;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1480-1491
    • /
    • 2013
  • Certificate-based cryptography is a new cryptographic primitive which eliminates the necessity of certificates in the traditional public key cryptography and simultaneously overcomes the inherent key escrow problem suffered in identity-based cryptography. However, to the best of our knowledge, all existed constructions of certificate-based encryption so far have to be based on the bilinear pairings. The pairing calculation is perceived to be expensive compared with normal operations such as modular exponentiations in finite fields. The costly pairing computation prevents it from wide application, especially for the computation limited wireless sensor networks. In order to improve efficiency, we propose a new certificate-based encryption scheme that does not depend on the pairing computation. Based on the decision Diffie-Hellman problem assumption, the scheme's security is proved to be against the chosen ciphertext attack in the random oracle. Performance comparisons show that our scheme outperforms the existing schemes.

Group Key Exchange over Combined Wired and Wireless Networks

  • Nam, Jung-Hyun;Won, Dong-Ho
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.461-474
    • /
    • 2006
  • A group key exchange protocol is a cryptographic primitive that describes how a group of parties communicating over a public network can come up with a common secret key. Due to its significance both in network security and cryptography, the design of secure and efficient group key exchange protocols has attracted many researchers' attention over the years. However, despite all the efforts undertaken, there seems to have been no previous systematic look at the growing problem of key exchange over combined wired and wireless networks which consist of both stationary computers with sufficient computational capabilities and mobile devices with relatively restricted computing resources. In this paper, we present the first group key exchange protocol that is specifically designed to be well suited for this rapidly expanding network environment. Our construction meets simplicity, efficiency, and strong notions of security.

Enhanced Certificate-Based Encryption Scheme without Bilinear Pairings

  • Lu, Yang;Zhang, Quanling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.881-896
    • /
    • 2016
  • Certificate-based cryptography is a useful public key cryptographic primitive that combines the merits of traditional public key cryptography and identity-based cryptography. It not only solves the key escrow problem inherent in identity-based cryptography, but also simplifies the cumbersome certificate management problem in traditional public key cryptography. In this paper, by giving a concrete attack, we first show that the certificate-based encryption scheme without bilinear pairings proposed by Yao et al. does not achieve either the chosen-ciphertext security or the weaker chosen-plaintext security. To overcome the security weakness in Yao et al.'s scheme, we propose an enhanced certificate-based encryption scheme that does not use the bilinear pairings. In the random oracle model, we formally prove it to be chosen-ciphertext secure under the computational Diffie-Hellman assumption. The experimental results show that the proposed scheme enjoys obvious advantage in the computation efficiency compared with the previous certificate-based encryption schemes. Without costly pairing operations, it is suitable to be employed on the computation-limited or power-constrained devices.

Analysis of Certificateless Signcryption Schemes and Construction of a Secure and Efficient Pairing-free one based on ECC

  • Cao, Liling;Ge, Wancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4527-4547
    • /
    • 2018
  • Signcryption is a cryptographic primitive that provides authentication (signing) and confidentiality (encrypting) simultaneously at a lower computational cost and communication overhead. With the proposition of certificateless public key cryptography (CLPKC), certificateless signcryption (CLSC) scheme has gradually become a research hotspot and attracted extensive attentions. However, many of previous CLSC schemes are constructed based on time-consuming pairing operation, which is impractical for mobile devices with limited computation ability and battery capacity. Although researchers have proposed pairing-free CLSC schemes to solve the issue of efficiency, many of them are in fact still insecure. Therefore, the challenging problem is to keep the balance between efficiency and security in CLSC schemes. In this paper, several existing CLSC schemes are cryptanalyzed and a new CLSC scheme without pairing based on elliptic curve cryptosystem (ECC) is presented. The proposed CLSC scheme is provably secure against indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2) and existential unforgeability under adaptive chosen-message attack (EUF-CMA) resting on Gap Diffie-Hellman (GDH) assumption and discrete logarithm problem in the random oracle model. Furthermore, the proposed scheme resists the ephemeral secret leakage (ESL) attack, public key replacement (PKR) attack, malicious but passive KGC (MPK) attack, and presents efficient computational overhead compared with the existing related CLSC schemes.

A Study on the Security analysis and Applications of Standard Key agreement protocols based on Elliptic curve cryptosystem (타원 곡선에 기반한 표준 키 분배 프로토콜의 안전성 분석 및 응용 분야에 관한 연구)

  • 오수현;이승우;심경아;양형규;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.103-118
    • /
    • 2002
  • To provide the privacy of transmitted message over network the use of cryptographic system is increasing gradually. Because the security and reliability of the cryptographic system is totally rely on the key, the key management is the most important part of the cryptographic system. Although there are a lot of security products providing encryption, the security of the key exchange protocols used in the product are not mostly proved yet. Therefore, we have to study properties and operation of key agreement protocols based on elliptic curve in ANSI X9.63. furthermore, we analyze the security of their protocols under passive and active attacker models and propose the most suitable application field taking the feature of the protocols into account.