• 제목/요약/키워드: Difficult to Machine Material

검색결과 139건 처리시간 0.021초

목재 섬유판의 음향방출 위치표정과 재료 특성 평가 (Acoustic Emission Source Location and Material Characterization Evaluation of Fiberboards)

  • 노승남;박익근;서성원;김용권
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.96-102
    • /
    • 2005
  • Acoustic Emission(AE) technique has been applied to not only material characterization evaluation but also on-line monitoring of the structural integrity. The AE source location technique is very important to identify the source, such as crack, leak detection. Since the AE waveforms obtained from sensors are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analysis of the transient wave-form. In this study, we have divided the region of interest into a set finite elements, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. A new technique for the source location of acoustic emission in fiberboard plates has been studied by introducing Wavelet Transform(WT) do-noising technique. WT is a powerful tool for processing transient signals with temporally varying spectra. If the WT de-noising was employed, we could successfully filter out the errors of source location in fiberboard plates by arrival time difference method. The accuracy of source location appeared to be significantly improved.

원내에서 5축 밀링기로 가공한 PMMA temporary crown의 다양한 임상적 활용

  • 서상진
    • 대한심미치과학회지
    • /
    • 제26권2호
    • /
    • pp.68-83
    • /
    • 2017
  • 치과용 CAD/CAM이 점차 보급됨에 따라, 사용할 수 있는 material의 종류와 활용할 수 있는 범위도 늘어나고 있다. 치과용 캐드캠의 가장 큰 장점은 한번의 방문으로 최종 보철물을 제작 할 수 있다는 점인데, 지르코니아나 복잡한 심미 보철의 경우 하루만에 제작하기 힘든 경우가 많다. 이러한 경우 임시치관용 PMMA 재료를 사용하여, 환자에게 심미성과 기능성을 가진 임시치관을 제공할 수 있으며 최종보철물에 대한 test crown이나 template등으로 활용할 수 있다. 그리고 원내에서 5축 밀링기로 가공한다면 임시치관을 빠른 시간에 큰 범위까지 정밀하게 제작할 수 있다. 이 글에서는 원내에서 가공하는 PMMA 임시치관의 다양한 활용과 임상증례에 대해 살펴보고자 한다.

탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능 (Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining)

  • 성진우;김남경;강명창
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

Investigation of EDM Characteristics of Nickel-based Heat Resistant Alloy

  • Kang, Sin-Ho;Kim, Dae-Eon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1475-1484
    • /
    • 2003
  • The EDM processing characteristics of one of the nickel-based heat resistant alloys, Hastelloy- X, were investigated under the various EDM conditions and analyzed in terms of surface integrity. This alloy is commonly used as a material for the hot gas path component of gas turbines and it is difficult to machine by conventional machining methods. The primary EDM parameter which was varied in this study were the pulse-on time. Since the pulse-on time is one of the main factors that determines the intensity of the electrical discharge energy, it was expected that the machining ratio and the surface integrity of the specimens would be proportionally dependent on the pulse-on duration. However, experimental results showed that MRR (material removal rate) and EWR (electrode wear rate) behaved nonlinearly with respect to the pulse duration, whereas the morphological and metallurgical features showed rather a constant trend of change by the pulse duration. In addition the heat treating process affected the recast layer and HAZ to be recrystallized but softening occurred in recast layer only. A metallurgical evaluation of the microstructure for the altered material zone was also conducted.

하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가 (Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System)

  • 김경중;강명창;이득우;김정석;김광호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF

전차용 엔진클러치 암플랜지 생산성 향상을 위한 연구 (Improvement in Productivity of Engine Clutch Female Flanges for Tank)

  • 김중선;권대규;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.56-62
    • /
    • 2022
  • The tank engine clutch flange constitutes a tank on which the engine and transmission of the tank are mounted. The engine clutch flange is fabricated using a difficult-to-cut material that exhibits high strength and hardness. It is difficult to process and requires considerable processing expertise. In addition, the engine clutch flange for the tank requires high machining precision because it is a system in which the connection is detachable. Because it requires high processing precision, the measurement of products equally important as processing. However, productivity is low owing to the significant amount of time required to measure each product using a three-dimensional coordinate measuring machine. Hence, this study is conducted to improve the productivity of the female tank engine clutch flange. Dedicated hobs and jigs are designed and manufactured to convert the existing end-mill cutting processing into hobbing cutting processing. An engine clutch for the tanks is manufactured using the manufactured dedicated hob and jig, and the shortening time is verified by measuring the processing time. In addition, a jig for inspection is designed and manufactured to measure the precision of the product. To verify the inspected product, the product precision is measured using a contact-type three-dimensional coordinate measuring machine and a surface roughness measuring instrument. The study confirmed that the productivity of the engine clutch flange product for tanks can be improved by simplifying the process, reducing the processing time, and simplifying product inspection.

티타늄 합금(Ti-6A1-4V)의 밀링가공에서 L자형 얇은 벽 구조의 가공품질 향상 (Improving Machining Quality of L-Shaped Thin-Walled Structure in Milling Process of Ti-Alloy (Ti-6Al-4V))

  • 김종민;구준영;전차수
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.52-59
    • /
    • 2021
  • Titanium alloy (Ti-alloy) is widely used as a material for core parts of aircraft structures and engines that require both lightweight and heat-resistant properties owing to their high specific stiffness. Most parts used in aircraft have I-, L-, and H-shaped thin-walled structures for weight reduction. It is difficult to machine thin-walled structures owing to vibrations and deformations during machining. In particular, cutting tool damage occurs in the corners of thin-walled structures owing to the rapid increase in cutting force and vibration, and machining quality deteriorates because of deep tool marks on machined surfaces. In this study, milling experiments were performed to derive an effective method for machining a L-shaped thin-walled structure with Ti-alloy (Ti-6Al-4V). Three types of machining experiment were performed. The surface quality, tool wear, cutting force, and vibration were analyzed comprehensively, and an effective machining method in terms of tool life and machining quality was derived.

Ti-6Al-4V 티타늄 합금의 공구 재종에 따른 선삭 특성 (Turning Characteristics of Various Tool Materials in the Machining of Ti-6Al-4V)

  • 최종근;김형선;정진오
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.38-44
    • /
    • 2008
  • Titanium and its alloys, due to their superior properties of high specific strength and excellent corrosion resistance, are increasingly used in living applications in the 21century. The applications in aerospace and medical industries demand machining process more frequently to obtain a desired product. But unfortunately, this material is one of the most difficult-to-cut. In the turning process of titanium alloys, the key point for successful work is to select proper tool materials and cutting conditions. This study suggests a guidance for selecting the tool materials and the cutting speeds to improve tool life and surface integrity in Ti-6Al-4V titanium turning process. The experiments investigate the change of surface roughnesses, cutting forces and flank wear with various cutting parameters of tool materials, depth of cuts and feeds. As the results, K10 type of insert tip was assured as the best for turning of Ti-6Al-4V titanium alloy.

초정밀 가공기용 마이크로 스테이지의 힌지 형상에 따른 안정성 해석 (Stability Analysis According to Hinge Type Alteration on Micro Stage for Micro Cutting Machine)

  • 김재열;곽이구;심재기;안재신;송경석;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.993-998
    • /
    • 2002
  • Ultra precision processing technology is the field which is seriously protected its technology by advanced nations. Because of this reason, this technology is very difficult to supply for domestic companies, also domestic companies are revealed the limit of technology development by itself. And then, those are depend on the technology development of advanced nation, domestic companies are not conquer application step with already developed parts. Of course, some cases of its research are succeed. those are included element technology, system technology and so on, for development of ultra precision processing system. To conquer technology holding ultra precision processing accuracy of no level, active research are needed. In this paper, stability of ultra precision cutting unit is analyzed, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for un it control.

  • PDF

니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구 (A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel)

  • 성기석;김정두
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.120-130
    • /
    • 1993
  • 본 연구에서는 니켈의 가공시 나타나는 공구의 마멸에 대한 정량화 및 절삭변 수와의 연관성에 대한 연구는 그 자체가 마멸에 대한 데이터 베이스 측면에서 중요하 고, 이러한 접근방법으로는 연구가 거의 이루어지지 않았다는 측면에서도 큰 의미를 갖는다. 본 연구는 특히 경도가 큰 공구인 CBN, 소결 다이아몬드(poly crystal dia- mond 이하 PCD), 단결정 다이아몬드(single crystal diamond 이하 SCD)공구를 사용하 여 니켈의 절삭에서 나타나는 공구의 마멸에 대한 분석을 선행한 후 수집한 정보로부 터 절삭속도, 이송, 절삭깊이 및 공구의 nose반경이 공구의 마멸 및 표면의 성상(su- rface quality)에 미치는 영향에 대하여 고찰하였고 절삭조건의 변화에 따라 마멸에 대한 예상 곡선을 구하였다.