• 제목/요약/키워드: Differentiation and mineralization

검색결과 153건 처리시간 0.025초

Chiisanoside, A Lupane Triterpenoid from Acanthopanax Leaves, Stimulates Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells

  • Choi, Eun-Mi;Ding, Yan;Nguyen, Huu Tung;Park, Sang-Hyuk;Nguyen, Xuan Nhiem;Liang, Chun;Lee, Jung-Joon;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • 제14권1호
    • /
    • pp.21-26
    • /
    • 2008
  • The leaves of Acanthopanax species have traditionally been used as a tonic and a sedative as well as in the treatment of rheumatism and diabetes. Chiisanoside is the major active lupane triterpenoid of Acanthopanax leaves. To investigate the bioactivities of chiisanoside, which act on bone metabolism, the effects of chiisanoside on the function of osteoblastic MC3T3-E1 cells were studied. Chiisanoside $(0.02{\sim}20\;{\mu}M)$ significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and nodules mineralization in the cells (P < 0.05). The effect of chiisanoside (2 ${\mu}M$) in increasing ALP activity was completely prevented by the presence of tamoxifen, suggesting that the effect of chiisanoside might be partly estrogen receptor mediated. Moreover, cotreatment of p38 inhibitor SB203580 or JNK inhibitor SP600125 inhibited chiisanoside-mediated ALP upregulation, suggesting that the induction of differentiation by chiisanoside is associated with increased activation of p38 and JNK mitogen-activated protein kinases. Our data indicate that the enhancement of osteoblast function by chiisanoside may result in the prevention for osteoporosis.

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

배양된 인간 골막기원세포의 조골활성 및 골기질 형성의 평가 (EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS)

  • 박봉욱;변준호;이성균;하영술;김덕룡;조영철;성일용;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.511-519
    • /
    • 2006
  • Autogenous bone grafts have been considered the gold standard for maxillofacial bony defects. However, this procedure could entail a complicated surgical procedure as well as potential donor site morbidity. Possibly the best solution for bone-defect regeneration is a tissue engineering approach, i.e. the use of a combination of a suitable scaffold with osteogenic cells. A major source of osteogenic cells is the bone marrow. Bone marrow-derived mesenchymal stem cells are multipotent and have the ability to differentiate into osteoblastic, chondrocytic, and adipocytic lineage cells. However, the isolation of cells from bone marrow has someproblems when used in clinical setting. Bone marrow aspiration is sometimes potentially more invasive and painful procedure and carries of a risk of morbidity and infection. A minimally invasive, easily accessible alternative would be cells derived from periosteum. The periosteum also contains multipotent cells that have the potential to differentiate into osteoblasts and chondrocytes. In the present study, we evaluated the osteogenic activity and mineralization of cultured human periosteal-derived cells. Periosteal explants were harvested from mandibule during surgical extraction of lower impacted third molar. The periosteal cells were cultured in the osteogenic inductive medium consisting of DMEM supplemented with 10% fetal calf serum, 50g/ml L-ascorbic acid 2-phosphate, 10 nmol dexamethasone and 10 mM -glycerophosphate for 42 days. Periosteal-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 14 of culture period, then decreased in intensity during the culture period. ALP mRNA expression increased up to day 14 with a decrease thereafter. Osteocalcin mRNA expression appeared at day 7 in culture, after that its expression continuously increased in a time-dependent manner up to the entire duration of culture. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. In conclusion, our study showed that cultured human periosteal-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix. As the periosteal-derived cells, easily harvested from intraoral procedure such as surgical extraction of impacted third molar, has the excellent potential of osteogenic capacity, tissue-engineered bone using periosteal-derived cells could be the best choice in reconstruction of maxillofacial bony defects.

배양된 치유두 유래세포의 조골활성 및 골기질 형성의 평가 (EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN DENTAL PAPILLA-DERIVED CELLS)

  • 박봉욱;변준호;최문정;하영술;김덕룡;조영철;성일용;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권4호
    • /
    • pp.279-288
    • /
    • 2007
  • In the present study, we focused on stem cells in the dental papilla of the tooth germ. The tooth germ, sometimes called the tooth bud, is the primordial structure from which a tooth is formed. The tooth germ consists of the enamel organ, the dental papilla, and the dental follicle. The dental papilla lies below a cellular aggregation of the enamel organ. Mesenchymal cells within the dental papilla are responsible for formation of dentin and pulp of a tooth. Tooth germ disappears as a tooth is formed, but that of a third molar stays in the jawbone of a human until the age of 10 to 16, because third molars grow slowly. Impacted third molar tooth germs from young adults are sometimes extracted for orthodontic treatment. In the present study, we evaluated the osteogenic activity and mineralization of cultured human dental papilla-derived cells. Dental papillas were harvested from mandible during surgical extraction of lower impacted third molar from 3 patients aged 13-15 years. After passage 3, the dental papilla-derived cells were trypsinized and subsequently suspended in the osteogenic induction DMEM medium supplemented with 10% fetal bovine serum, 50 g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate at a density of $1\;{\times}10^6\;cells/dish$ in a 100-mm culture dish. The dental papilla-derived cells were then cultured for 6 weeks and the medium was changes every 3 days during the incubation period. Dental papilla-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 7 of culture period, then decreased in intensity during the culture period. ALP mRNA level was largely elevated at 1 weeks and gradually decreased with culture time. Osteocalcin mRNA expression appeared at day 14 in culture, after that its expression continuously increased in a time-dependent manner up to day 28. The expression remained constant thereafter. Runx2 expression appeared at day 7 with no detection thereafter. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. Osteocalcin secretion was detectable in the culture medium from 1 week. The secretion of osteocalcin from dental papilla-derived cells into the medium greatly increased after 3 weeks although it showed a shallow increase by then. In conclusion, our study showed that cultured human dental papilla-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix.

Biphasic effects of TGFβ1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells

  • Li, Rui-Dong;Deng, Zhong-Liang;Hu, Ning;Liang, Xi;Liu, Bo;Luo, Jin-Yong;Chen, Liang;Yin, Liangjun;Luo, Xiaoji;Shui, Wei;He, Tong-Chuan;Huang, Wei
    • BMB Reports
    • /
    • 제45권9호
    • /
    • pp.509-514
    • /
    • 2012
  • We have found that the previously uncharacterized bone morphogenetic protein-9 (BMP9) is one of the most osteogenic factors. However, it is unclear if BMP9 cross-talks with $TGF{\beta}1$ during osteogenic differentiation. Using the recombinant BMP9 adenovirus, we find that low concentration of rh$TGF{\beta}1$ synergistically induces alkaline phosphatase activity in BMP9-transduced C3H10T1/2 cells and produces more pronounced matrix mineralization. However, higher concentrations of $TGF{\beta}1$ inhibit BMP9-induced osteogenic activity. Real-time PCR and Western blotting indicate that BMP9 in combination with low dose of $TGF{\beta}1$ potentiates the expression of later osteogenic markers osteopontin, osteocalcin and collagen type 1 (COL1a2), while higher concentrations of $TGF{\beta}1$ decrease the expression of osteopontin and osteocalcin but not COL1a2. Cell cycle analysis reveals that $TGF{\beta}1$ inhibits C3H10T1/2 proliferation in BMP9-induced osteogenesis and restricts the cells in $G_0/G_1$ phase. Our findings strongly suggest that $TGF{\beta}1$ may exert a biphasic effect on BMP9-induced osteogenic differentiation of mesenchymal stem cells.

안양장석광상의 광화작용에 관한 연구 (A Study on Mineralization of Anyang Feldspar Ore Deposit)

  • 박부성;지정만
    • 자원환경지질
    • /
    • 제27권1호
    • /
    • pp.11-28
    • /
    • 1994
  • The Anyang Feldspar Mine is located in Seoksu Dong, Anyang City, Kyeonggi Do, Korea and has a long exploitation record that is once produced high grade sodium feldspars, for glaze. Geologically, This area is mainly composed of Mesozoic Jurassic biotite granite (Anyang granite) which intruded Precambrian Kyeonggi Gneiss Complex outcroped near the mining area. The deposit is localized on the southwest hill side of Anyang granite batholith and is confined in hydrothemal alteration zone formed by sodium-rich alkali hydrothermal fluids along the fractures of leucocratic granite showing later differentiation facies in the biotite granite. The hydrothermal alteration is characterized by albitization, sericitization, and desilication. The microscopic observation and EPMA, XRD analysis of the feldspar ores show that major minerals are albite and quartz and accessory minerals are orthoclase and sericite, and they are rarely associated with perthite, fluorite, zircon, kaolinite, molybdenite, microcline and iron-oxide. In the REE pattern, the strong negative Eu anomalies of the feldspar ores indicate the influence of feldspar fractionation and show similiar pattern of the host leucocratic granite. The filling temperature of quartz crystals in ore zone ranges from $276^{\circ}C$ to $342^{\circ}C$, and it is inferred that the alteration occurred by the hypothermal solution.

  • PDF

사람 태아 골모 세포에 대한 냉동 동종골과 근골격이식재의 골형성 유도에 관한 효과 (Effects of Irradiated Frozen Allogenic Bone and Musculoskeletal Transplant Foundation on Bone Formation in Human Fetal Osteoblasts)

  • 윤호상;피성희;윤형근
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.435-448
    • /
    • 2006
  • The purpose of this study was to investigate the effects of ICB(Irradiated frozen allogenic bone, Rocky Mountain Tissue Bank, USA) and MTF(Decalcified freeze-dried bone allograft, Musculoskeletal Transplant Foundation, USA) on the cell proliferation and differentiation of human fetal osteoblasts. Human fetal osteoblasts (hFOB1) were cultured with $10\;ng/m{\ell}$of ICB and MTF. The negatvie control group was cultured with DMSO and positive control group was cultured with BMF ($2\;ng/m{\ell}$). MIT was performed to examine the viability of the cell, and alkaline phosphatase activity was analyzed to examine the mineralization. Calcium accumulation was also evaluated. ICB and MTF did not increase the rate of the cellular proliferation of hFOB1s while they enhanced ALP and calcium accumulation. The expression of osteocalcin (OC) and bone silaloprotein (BSP) increased in hFOB1 treated with ICB and MTF ($10\;ng/m{\ell}$). These results suggest that ICB and MTF stimulate osteoblastic activity of the hFOBl.

Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity

  • Hwang, Jae-ho;Oh, Seunghan;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권2호
    • /
    • pp.114-126
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the enhancement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Methods: The cell viability, differentiation, and mineralization of osteoblasts was tested with ErhBMP-2-/EGCG solution. Coated BCP surfaces were also investigated. Standardized, 6-mm diameter defects were created bilaterally on the maxillary sinus of 10 male New Zealand white rabbits. After removal of the bony windows and elevation of sinus membranes, ErhBMP-2-/EGCG-coated BCP was applied on one defect in the test group. BCP was applied on the other defect to form the control group. The animals were sacrificed at 4 or 8 weeks after surgery. Histologic and histometric analyses of the augmented graft and surrounding tissue were performed. Results: The 4-week and 8-week test groups showed more new bone (%) than the corresponding control groups (P<0.05). The 8-week test group showed more new bone (%) than the 4-week test group (P<0.05). Conclusions: ErhBMP-2-/EGCG-coated BCP was effective as a bone graft material, showing enhanced osteogenic potential and minimal side effects in a rabbit sinus augmentation model.

Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

  • Lee, Ki-Young;Choi, Hye-Seung;Choi, Ho-Sung;Chung, Ka Young;Lee, Bong-Jin;Maeng, Han-Joo;Seo, Min-Duk
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.191-198
    • /
    • 2016
  • The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin $D_3$ metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant ($K_d$) of quercetin and the VDR was $21.15{\pm}4.31{\mu}M$, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.

치주인대세포의 골기질 단백질 유전자 발현에 대한 Dexamethasone의 영향 (The effect of dexamethasone on the gene expression of the bone matrix protein in the periodontal ligament cells)

  • 정하봉;박진우;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제32권3호
    • /
    • pp.445-456
    • /
    • 2002
  • 치주조직 재생을 위해서는 새로운 백악질과 치조골 그리고, 치주인대의 재생이 필요하며, 이러한 재생을 담당할 세포의 분화가 필수적이다. 이러한 분화를 담당하는 것은 치주인대세포이며, 이 중 골아세포의 분화가 중요하다. 본 실험의 목적은 치주조직 재생에 있어서 중요한 요소인 치주인대세포의 골아세포성 세포로의 분화를 관찰하며, Dex가 광물화에 미치는 영향과 농도에 따른 차이를 알아보고자 시행하였다. 또한, 광물화시 발현되는 여러 골기질 단백질 중 Matrix GlaProtein의 발현양상도 관찰하였다. 교정치료를 목적으로 내원한 환자의 제1소구치 부위의 정상치은을 절제하고, 건강한 제1소구치를 발거하여 치은섬유아세포와 치주인대세포를 분리, 배양하여, ascorbic acid와 ${\beta}$-glycerophosphate 투여군을 실험1군, ascorbic acid, ${\beta}$-glycerophosphate, Dex 100nM 투여군을 실험 2군, ascorbic acid, ${\beta}$-glycerophosphate, Dex $5{\mu}M$ 투여군을 실험3군, 그리고, 단순 배양만 시킨군을 대조군으로 하여 비교하였다. 시간경과에 따른 치주인대세포 형태의 변화 양상은 초기에 방추형 혹은 다각형의 단일층 형태에서 7일경에는 세포 크기와 수가 증가하여 복합층 형태로 변화했으며, 배양 14일 이후에는 세포들의 방향성이 없어지고, 더욱 치밀해 졌다. 골 결절형성은 치주인 대세포의 Dex 투여군에서만 21일째에 나타났으며, $5{\mu}M$ 투여군에서 100nM 투여군보다 더 많이 나타났다. ALP 활성도를 비교해보면 치주인대세포에서 0, 7일 경에는 활성도를 보이지 않았으며, 14일경에 높은 활성도롤 나타냈으며, 21일에도 비슷한 활성도를 유지하였다. MGP 유전자 발현 양상은 대조군과 실험군 모두에서 Matrix Gla Protein에 대한 유전자의 발현이 나타났으며,그 발현양상은 모든 시기에서 일정하였다. 이상의 결과로 보아 치주인대세포는 골아세포로의 분화가 가능하며, Dex는 농도의존적으로 광물화에 영향을 미치는 것으로 사료된다. 그리고, MGP는 치주인대세포에서 발현이 감지되었으며, 광물화에는 영향을 미치지 않는 것으로 사료된다.