• 제목/요약/키워드: Differentially methylated region

검색결과 13건 처리시간 0.033초

돼지 체세포복제 35일령 태아에서 H19 메틸화 가변 영역의 DNA 메틸화 변화 (DNA Methylation Change of H19 Differentially Methylated Region (DMR) in Day 35 of Cloned Pig Fetuses)

  • 고응규;임기순;황성수;오건봉;우제석;조상래;최선호;이풍연;연성흠;조재현
    • 한국수정란이식학회지
    • /
    • 제26권1호
    • /
    • pp.79-84
    • /
    • 2011
  • This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.

Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper×Small Tailed Han crossbred sheep

  • Cao, Yang;Jin, Hai-Guo;Ma, Hui-Hai;Zhao, Zhi-Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1529-1539
    • /
    • 2017
  • Objective: The objective of this study was to compare the DNA methylation profile in the longissimus dorsi muscle between Small Tailed Han and Dorper${\times}$Small Tailed Han crossbred sheep which were known to exhibit significant difference in meat-production. Methods: Six samples (three in each group) were subjected to the methylated DNA immunoprecipitation sequencing (MeDIP-seq) and subsequent bioinformatics analyses to detect differentially methylated regions (DMRs) between the two groups. Results: 23.08 Gb clean data from six samples were generated and 808 DMRs were identified in gene body or their neighboring up/downstream regions. Compared with Small Tailed Han sheep, we observed a tendency toward a global loss of DNA methylation in these DMRs in the crossbred group. Gene ontology enrichment analysis found several gene sets which were hypomethylated in gene-body region, including nucleoside binding, motor activity, phospholipid binding and cell junction. Numerous genes were found to be differentially methylated between the two groups with several genes significantly differentially methylated, including transforming growth factor beta 3 (TGFB3), acyl-CoA synthetase long chain family member 1 (ACSL1), ryanodine receptor 1 (RYR1), acyl-CoA oxidase 2 (ACOX2), peroxisome proliferator activated receptor-gamma2 (PPARG2), netrin 1 (NTN1), ras and rab interactor 2 (RIN2), microtubule associated protein RP/EB family member 1 (MAPRE1), ADAM metallopeptidase with thrombospondin type 1 motif 2 (ADAMTS2), myomesin 1 (MYOM1), zinc finger, DHHC type containing 13 (ZDHHC13), and SH3 and PX domains 2B (SH3PXD2B). The real-time quantitative polymerase chain reaction validation showed that the 12 genes are differentially expressed between the two groups. Conclusion: In the current study, a tendency to a global loss of DNA methylation in these DMRs in the crossbred group was found. Twelve genes, TGFB3, ACSL1, RYR1, ACOX2, PPARG2, NTN1, RIN2, MAPRE1, ADAMTS2, MYOM1, ZDHHC13, and SH3PXD2B, were found to be differentially methylated between the two groups by gene ontology enrichment analysis. There are differences in the expression of 12 genes, of which ACSL1, RIN2, and ADAMTS2 have a negative correlation with methylation levels and the data suggest that DNA methylation levels in DMRs of the 3 genes may have an influence on the expression. These results will serve as a valuable resource for DNA methylation investigations on screening candidate genes which might be related to meat production in sheep.

돼지 초기수정란에서 Dnmt1o와 Dnmt1s 상류 영역의 DNA 메틸화 변화 (DNA Methylation Change of Dnmt1o and Dnmt1s 5'-Region in the Early Porcine Embryo)

  • 김현미;김성우;조성래;김현;박재홍;조재현;양보석;고응규
    • Reproductive and Developmental Biology
    • /
    • 제35권3호
    • /
    • pp.281-285
    • /
    • 2011
  • In the present study, we identified differentially methylated region (DMR) upstream of Dnmt1o and Dnmt1s gene in early porcine embryos. Porcine Dnmt1o had at least one DMR which was located between -530 bp to -30 bp upstream from transcription start site of the Dnmt1o gene. DNA methylation analyses of Dnmt1o revealed the DMR to be hypomethylated in oocytes, whereas it was highly methylated in sperm. Moreover, the DMR upstream of Dnmt1o was gradually hypermethylated from oocytes to two cells and dramatically changed in the methylation pattern from four cells to BL stages in an in vivo. In an IVF, the methylation status in the DMR upstream of Dnmt1o was hypermethylated from one cell to eight cells, but demethylated at the Morula and BL stages, indicating that the DNA methylation pattern in the Dnmt1o upstream ultimately changed from stage to stage before the implantation. Next, to elucidate whether DNA methylation status of Dnmt1s upstream is stage-by-stage changed in during porcine early development, we analyzed the dynamics of the DNA methylation status of the Dnmt1s locus in germ cell, or one cell to BL cells. The Dnmt1s upstream was highly methylated in one and eight cells, while less methylated in two, four, morula, and BL cells. Taken together, our data demonstrated that DNA methylation and demethylation events in upstream of Dnmt1o/Dnmt1s during early porcine embryos dramatically occurred, and this change may contribute to the maintenance of genomewide DNA methylation in early embryonic development.

Genetic overgrowth syndrome: A single center's experience

  • Cheon, Chong Kun;Kim, Yoo-Mi;Yoon, Ju Young;Kim, Young A
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.64-71
    • /
    • 2018
  • Purpose: Overgrowth syndromes are conditions that involve generalized or localized areas of excess growth. In this study, the clinical, molecular, and genetic characteristics of Korean patients with overgrowth syndrome were analyzed. Materials and Methods: We recruited 13 patients who presented with overgrowth syndrome. All patients fulfilled inclusion criteria of overgrowth syndrome. Analysis of the clinical and molecular investigations of patients with overgrowth syndrome was performed retrospectively. Results: Among the 13 patients with overgrowth syndrome, 9 patients (69.2%) were found to have molecular and genetic causes. Among the seven patients with Sotos syndrome (SS), two had a 5q35microdeletion that was confirmed by fluorescent in situ hybridization. In two patients with SS, intragenic mutations including a novel mutation, c.5993T>A (p.M1998L), were found by Sanger sequencing. One patient had one copy deletion of NDS1 gene which was confirmed by multiplex ligation-dependent probe amplification. Among five patients with Beckwith-Wiedemann syndrome, three had aberrant imprinting control regions; 2 hypermethylation of the differentially methylated region of H19, 1 hypomethylation of the differentially methylated region of Kv. In one patient displaying overlapping clinical features of SS, a de novo heterozygous deletion in the chromosomal region 7q22.1-22.3 was found by single nucleotide polymorphism-based microarray. Conclusion: Considering high detection rate of molecular and genetic abnormalities in this study, rigorous investigations of overgrowth syndrome may be an important tool for the early diagnosis and genetic counseling. A detailed molecular analysis of the rearranged regions may supply the clues for the identification of genes involved in growth regulation.

소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화 (DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos)

  • 고응규;김종무;김동훈;차병현;황성수;양병철;임기순;김명직;민관식;성환후
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.33-38
    • /
    • 2008
  • DNA 메틸화는 조직특이적인 유전자 조절에 관여하고, 정상적인 배 발달에 필수적이다. POU5F1은 octamer-binding transcription factor 4 (Oct-4)를 encode하며, 초기 분화에 중요한 전사인자이다. 본 실험에서 소의 Oct-4가 조직특이적이고 발달의존적인 epigenetic 표지 인지를 검토하고자, 착상 전 수정란에서 Oct-4 전사산물과 상류 promoter 영역의 CpGs의 메틸화를 조사하였다. Oct-4 전사산물은 정자 그리고 2-cell에서 8-cell 수정란까지 낮은 수준으로 존재하지만, 상실배와 배반포에서 높게 검출되었다. 이러한 결과는 배 발달 과정의 상실배 단계에서 Oct-4의 de novo 발현이 시작됨을 의미한다. Oct-4 상류 promoter 영역에는 메틸화 가변 영역 (tissue-dependent differentially methylated region, T-DMR)이 존재한다. Oct-4 메틸화 가변 영역의 메틸화 상태는 정자, 성체 체조직과 난자에서 서로 다르고, 수정란으로부터 배반포 단계까지 변화하였는데, 이는 착상 전 초기 배 발달 과정에 active 메틸화와 탈메틸화가 일어남을 의미한다. 이상의 결과, Oct-4 유전자 상류 promoter 영역은 DNA 메틸화의 타깃이고, 그 메틸화 상태는 소 수정란 발달 동안에 다양하게 변화한다.

돼지 체세포 복제란 초기발달 과정 중 Dnmt1o 상류 영역의 다이내믹한 DNA 메틸화 변화 (Dynamic DNA Methylation Change of Dnmt1o 5'-Terminal Region during Preimplantation Development of Cloned Pig)

  • 고응규;김성우;조상래;도윤정;김재환;김상우;김현;박재홍;박수봉
    • Reproductive and Developmental Biology
    • /
    • 제36권1호
    • /
    • pp.7-12
    • /
    • 2012
  • DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5'-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in -640 bp to -30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the $in$ $vivo$ or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the $in$ $vivo$ was increased up to 84.38% in the SCNT embryo, moreover, $de$ $novo$ methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the $in$ $vivo$ or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.

Pseudohypoparathyroidism: Clinical Review of Diagnosis and Genetic Etiology

  • Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.29-31
    • /
    • 2023
  • Pseudohypoparathyroidism (PHP) is very rare and shows heterogeneity with impaired genetic components. PHP is characterized by parathyroid hormone resistance to target organ, related with a GNAS (guanine nucleotide-binding protein α-subunit) mutation and epimutation. PHP receptor is coupled with the stimulatory G protein which activates cyclic adenosine monophosphate formation. PHP type 1A is caused by inactivating mutations on the maternal allele of the GNAS whereas paternal allele mutations cause pseudopseudohypoparathyroidism. PHP type 1B is caused by abnormal patterns of methylation in differentially methylated region which can be divided into partial or complete. This disease has some difficulties to diagnose according to these different molecular alterations caused by complex genetic and epigenetic defects. According to this different molecular alterations, genetic confirmation must be done to discriminate their etiology.

체세포복제 소 배반포의 Oct-4 발현과 DNA 메틸화 변화 (Expression and DNA Methylation Change of Oct-4 in Cloned Bovine Blastocysts)

  • 차병현;최정상;황성수;정학재;임기순;양병철;김명직;조재현;성환후;고응규
    • 한국수정란이식학회지
    • /
    • 제23권3호
    • /
    • pp.133-139
    • /
    • 2008
  • DNA methylation is one of the reasons for poor survival of clone animals. The OCT-4 gene is essential for maintaining pluripotency of embryonic stem (ES) cells and early embryos. We previously reported that the 5'-promoter region of Oct-4 gene was a target of DNA methylation and the methylation status was changed variously during embryonic development in bovine. The study conducted to examine the expression and methylation pattern of tissue-dependent differentially methylated region (T-DMR) of Oct-4 gene in bovine somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF) blastocysts. The Oct-4 gene expression was evaluated by RT-PCR and fluorescence immunocytochemistry. The methylation pattern of T-DMR was analyzed using restriction mapping and bisulfite sequencing methods. The Oct-4 transcripts were highly expressed in IVF, while they were not expressed in SCNT. The Oct-4 protein was not detected or expressed at very low level in SCNT, the intensity of Oct-4 protein, however, was strong in IVF. On the other hand, the T-DMR of Oct-4 gene was hypermethylated in SCNT compared to that of IVF. These results suggested that expression and the failure of demethylation of Oct-4 gene was closely associated with incomplete development of SCNT embryos.

The mRNA Expression and Methylation Pattern of Apoptosis-related and Imprinted Genes in Day 35 of Cloned Pig Fetuses

  • Jung, Hyun-Ju;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Park, Choon-Keun;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.227-233
    • /
    • 2007
  • This study was conducted to examine the mRNA expression of apoptosis-related and imprinted genes and methylation pattern of the differentially methylated region (DMR) of H19 gene in day 35 of SCNT pig fetuses. The day 35 of natural mating (control) or cloned (clone) pig fetuses were recovered from uterus. Endometrium from dam and liver from fetus were obtained, respectively. mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. The Bcl-2 mRNA expression in clone was significantly lower than that of control (p<0.05). The mRNA expression of H19 gene in both endometrium and liver was significantly higher in clone than that of control, respectively (p<0.05). The level of IGF-2 mRNA in liver of clone was significantly lower than that of control (p<0.05), whereas the mRNA expression of IGF2-R gene in liver of clone was significantly higher than that of control (p<0.05). The DMR of H19 was lower methylation pattern in clone than that of control. These results suggest that the aberrant mRNA expression of apoptosis-related and imprinted genes and the lower DMR methylation pattern of imprinted gene may be closely related to the inadequate fetal development of cloned fetus.

Methylation Specific PCR-RFLP 방법을 이용한 Beckwith Wiedemann Syndrome의 진단 (Genetic Diagnosis of Beckwith Wiedemann Syndrome using Methylation Specific PCR-RFLP Method)

  • 김구환;이진주;최성훈;이주연;이범희;유한욱
    • Journal of Genetic Medicine
    • /
    • 제7권2호
    • /
    • pp.133-137
    • /
    • 2010
  • 목 적: Beckwith-Wiedemann 증후군(BWS)은 11p15 부위의 메칠화 양상의 이상으로 인한 overgrowth malformation symdrome이다. 11p15 부위에는 두 가지 imprinting center, 즉BWSIC1 (IGF2, H19)와 BWSIC2 (LIT1,KvDMR)가 존재한다. 본 연구에서는 methylation-specific (MS) PCR RFLP 방법을 이용한 BWS의 유전적 진단을 보고하고자 한다. 대상 및 방법: 임상 소견을 바탕으로 12명의 BWS 환자가 포함되었다. 환자의 말초혈액으로부터 염색체 핵형을 조사하였다. 분리한 DNA에 bisulfite를 처리한 후, LIT1, H19, IGF2 DMR부위는 각각의 MS primer를 이용하여 증폭하였다. 적절한 제한효소를 이용하여 절단 여부를 PAGE로 확인함으로써 각각의 DMR 부위에 대한 메칠화 이상 여부를 확인하였다. 결 과: 12명의 환자는 모두 정상 핵형을 보였다. MS-PCR RFLP 상 총 7명(53.8%)의 환자가 이상 소견을 보였으며, 모두 BWSIC2 (LIT1)에 비정상적 메칠화를 보였고 모두 부계 유래의 비메칠화된 allele만이 발견되었다. 결 론: 본 연구를통해MS-PCR RFLP 검사로BWS 환자의 약 50-60% 정도에서 유전적 진단이 가능함을 알 수 있었으며, 이는 BWSIC2 부위의 메칠화 이상을 발견하는데 손쉽게 이용될 수 있을 것으로 판단된다. 그러나, BWSIC1 부위의 메칠화 이상은 발견이 어려우며, 이 부위의 이상을 발견하기 위해서는 메칠화를 정량적으로 분석할 수 있는 방법이 필요하다.