• Title/Summary/Keyword: Differentially Expressed Proteins

Search Result 247, Processing Time 0.03 seconds

Identification of Cold Stress-related Proteins in Rice Leaf Tissue (벼의 잎 조직에서 발현되는 저온 스트레스 관련 단백질의 분리 동정)

  • Lee Dong-Gi;Lee Sang-Hoon;Lee Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.287-296
    • /
    • 2005
  • To investigation protein expression pattern in rice leaves exposed to cold stress, the soluble proteins extracted from leaf tissue were fractionated with $15\%$ PEG and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). Differentially expressed proteins were identified by peptide mass fingerprinting using matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Eight proteins up-regulated and 10 down-regulated were found in $15\%$ PEG supernatant fraction. In addition, 13 proteins up-regulated and 14 down-regulated were found in $15\%$ PEG pellet fraction. It was identified the differentially expressed proteins in $15\%$ PEG supernatant fraction as pimerase/dehydratase fructokinase, ribose-5-phosphate isomerase (Rpi), chaperonin 21 precursor, probable photosystem II oxygen-envolving complex (PS II OEC) protein 2 precursor and thioredoxin h-type (Trx-h) and those in $15\%$ PEG pellet fraction as OSINBb0059K02.15, hypothetical protein, putative mitogen-activated protein kinase kinase (MAPKK), beta 7 subunit of 205 proteasome, ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit. These proteins are involved in metabolism, energy, protein synthesis, disease/defense and signal transduction-related proteins.

Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions

  • Lee, So Eui;Gupta, Ravi;Jayaramaiah, Ramesha H.;Lee, Seo Hyun;Wang, Yiming;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.458-466
    • /
    • 2017
  • Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA samples of high quality. A total of 4,619 differentially expressed genes were identified between in planta and in vitro growth conditions. The majority of the differentially expressed genes identified under in planta growth conditions were related to the nutrient transport, protease activity, stress tolerance, and pathogenicity. Among them, over 1,300 differentially expressed genes were determined to be secretory, including 184 putative type III effectors that may be involved in Xoo pathogenicity. Expression pattern of some of these identified genes were further validated by semi-quantitative RT-PCR. Taken together, these results provide a transcriptome overview of Xoo under in planta and in vitro growth conditions with a focus on its pathogenic processes, deepening our understanding of the behavior and pathogenicity of Xoo.

Identification and Functional Analysis of Differentially Expressed Genes Related to Metastatic Osteosarcoma

  • Niu, Feng;Zhao, Song;Xu, Chang-Yan;Chen, Lin;Ye, Long;Bi, Gui-Bin;Tian, Gang;Gong, Ping;Nie, Tian-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10797-10801
    • /
    • 2015
  • Background: To explore the molecular mechanisms of metastatic osteosarcoma (OS) by using the microarray expression profiles of metastatic and non-metastatic OS samples. Materials and Methods: The gene expression profile GSE37552 was downloaded from Gene Expression Omnibus database, including 2 human metastatic OS cell line models and 2 two non-metastatic OS cell line models. The differentially expressed genes (DEGs) were identified by Multtest package in R language. In addition, functional enrichment analysis of the DEGs was performed by WebGestalt, and the protein-protein interaction (PPI) networks were constructed by Hitpredict, then the signal pathways of the genes involved in the networks were performed by Kyoto Encyclopaedia of Genes and Genomes (KEGG) automatic annotation server (KAAS). Results: A total of 237 genes were classified as DEGs in metastatic OS. The most significant up- and down-regulated genes were A2M (alpha-2-macroglobulin) and BCAN (brevican). The DEGs were significantly related to the response to hormone stimulus, and the PPI network of A2M contained IL1B (interleukin), LRP1 (low-density lipoprotein receptor-related protein 1) and PDGF (platelet-derived growth factor). Furthermore, the MAPK signaling pathway and focal adhesion were significantly enriched. Conclusions: A2M and its interactive proteins, such as IL1B, LRP1 and PDGF may be candidate target molecules to monitor, diagnose and treat metastatic OS. The response to hormone stimulus, MAPK signaling pathway and focal adhesion may play important roles in metastatic OS.

Comparative Analysis of Serum Proteomes of Moyamoya Disease and Normal Controls

  • Koh, Eun-Jeong;Kim, Han-Na;Ma, Tian-Ze;Choi, Ha-Young;Kwak, Yong-Geun
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Objective : The etiology and pathogenesis of moyamoya disease remain unclear. Furthermore, the definitive diagnostic protein-biomarkers for moyamoya disease are still unknown. The present study analyzed serum proteomes from normal controls and moyamoya patients to identify novel serological biomarkers for diagnosing moyamoya disease. Methods : We compared the two-dimensional electrophoresis patterns of sera from moyamoya disease patients and normal controls and identified the differentially-expressed spots by matrix-assisted laser desorption/ionization-time-of flight mass spectrometry and electrospray ionization quadruple time-of-flight mass spectrometry. Results : We found and analyzed 22 differently-expressed proteomes. Two proteins were up-regulated. Twenty proteins were down-regulated. Complement C1 inhibitor protein and apolipoprotein C-III showed predominantly changed expressions (complement C1 inhibitor protein averaged a 7.23-fold expression in moyamoya patients as compared to controls, while apolipoprotein C-III averaged a 0.066-fold expression). Conclusion : Although our study had a small sample size, our proteomic data provide serologic clue proteins for understanding moyamoya disease.

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

A Proteomic Approach to Study msDNA Function in Escherichia coli

  • Jeong, Mi-Ae;Lim, Dongbin
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2004
  • Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.

Protein Expression Profiling of Infected Murine Macrophage Cells (RAW 264.7) by Bacillus anthracis Spores

  • Seo Gwi-Moon;Nam Jeong-Ah;Oh Kwang-Gun;Chai Young-Gyu
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.77-79
    • /
    • 2003
  • Current therapeutic strategies far anthrax have had no significant impact on anthrax mortality over the last several decades. This study used a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) discovery platform to generate protein expression profiles in search of overexpressed proteins in murine macrophage cells (RAW264.7) which infected with Bacillus anthracis spores as potentially novel molecular targets. Two differentially expressed proteins were identified in infected murine macrophage cells as Syndapin and CDC46, respectively. Syndapins are potential links between the cortical actin cytoskeleton and endocytosis. Other two proteins were identified from murine macrophage cells infected with avirulent spores as ITBG-2 (CD18) and HSPA5, respectively. These data demonstrate the feasibility of using a MALDI-TOF platform to generate protein expression profiles and identify potential molecular targets for anthrax therapeutics.

  • PDF

Network-Based Protein Biomarker Discovery Platforms

  • Kim, Minhyung;Hwang, Daehee
    • Genomics & Informatics
    • /
    • v.14 no.1
    • /
    • pp.2-11
    • /
    • 2016
  • The advances in mass spectrometry-based proteomics technologies have enabled the generation of global proteome data from tissue or body fluid samples collected from a broad spectrum of human diseases. Comparative proteomic analysis of global proteome data identifies and prioritizes the proteins showing altered abundances, called differentially expressed proteins (DEPs), in disease samples, compared to control samples. Protein biomarker candidates that can serve as indicators of disease states are then selected as key molecules among these proteins. Recently, it has been addressed that cellular pathways can provide better indications of disease states than individual molecules and also network analysis of the DEPs enables effective identification of cellular pathways altered in disease conditions and key molecules representing the altered cellular pathways. Accordingly, a number of network-based approaches to identify disease-related pathways and representative molecules of such pathways have been developed. In this review, we summarize analytical platforms for network-based protein biomarker discovery and key components in the platforms.

Analysis of brain protein expression in developing mouse fetus (임신일령에 따른 생쥐 태아 뇌조직의 단백질 발현 양상 분석)

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yun-Fei;Woo, Je-Seok;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Development of mouse fetus brains can be defined morphologically and functionally by three developmental stages, embryo day (ED) 16, postnatal stage one week and eight weeks. These defined stages of brain development may be closely associated with differential gene expression rates due to limited cellular resources such as energy, space, and free water. Complex patterns of expressed genes and proteins during brain development suggests the changes in relative concentrations of proteins rather than the increase in numbers of new gene products. This study was designed to evaluate early protein expression pattern in mouse fetus brain. The mouse brain proteome of fetus at ED 15.5, and 19.5 was obtained using 2-dimensional gel electrophoresis (DE). Analysis of the 2-DE gels in pH 3-10 range revealed the presence of 15 differentially expressed spots, of which 11 spots were identified to be known proteins following MALDI-TOF analysis; 3 spots were up-regulated and 8 spots were down-regulated in the mouse fetus brain at ED 15.5. UP-regulated proteins were identified as MCG18238, isoform M2 of pyruvate kinase isozymes M1/M2, isoform 2 of heterogeneous nuclear ribonucleoprotein K, heterogeneous nuclear ribonucleoprotein H2, creatine kinase B-type, 40S ribosomal protein SA and hemoglobin subunit beta-H1. Down-regulated proteins were putative uncharacterized protein, lactoylglutathione lyase and secreted acidic cysteine rich glycoprotein. Our results revealed composite profiles of mouse fetus brain proteins related to mouse fetus development by 2-DE analysis implying possible roles of these proteins in neural differentiation.