• 제목/요약/키워드: Differential scanning microcalorimetry

검색결과 2건 처리시간 0.017초

Conformational Study of Human Serum Albumin in Pre-denaturation Temperatures by Differential Scanning Calorimetry, Circular Dichroism and UV Spectroscopy

  • Rezaei-Tavirani, Mostafa;Moghaddamnia, Seyed Hassan;Ranjbar, Bijan;Amani, Mojtaba;Marashi, Sayed-Amir
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.530-536
    • /
    • 2006
  • Thermal conformational changes of human serum albumin (HSA) in phosphate buffer, 10 mM at pH = 7 are investigated using differential scanning calorimetric (DSC), circular dichroism (CD) and UV spectroscopic methods. The results indicate that temperature increment from $25^{\circ}C$ to $55^{\circ}C$ induces reversible conformational changes in the structure of HSA. Conformational change of HSA are shown to be a three-step process. Interestingly, melting temperature of the last domain is equal to the maximum value of fever in pathological conditions, i.e. $42^{\circ}C$. These conformational alterations are accompanied by a mild alteration of secondary structures. Study of HSA-SDS (sodium dodecyl sulphate) interaction at $45^{\circ}C$ and $35^{\circ}C$ reveals that SDS affects the HSA structure at least in three steps: the first two steps result in more stabilization and compactness of HSA structure, while the last one induces the unfolding of HSA. Since HSA has a more affinity for SDS at $45^{\circ}C$ compared to $35^{\circ}C$, It is suggested that the net negative charge of HSA is decreased in fever, which results in the decrease of HSA-associated cations and plasma osmolarity, and consequently, heat removal via the increase in urine volume.

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.