• 제목/요약/키워드: Differential evolutionary algorithm

검색결과 36건 처리시간 0.023초

개선된 DE 알고리즘을 이용한 전력계통의 경제급전 (An Improved Differential Evolution for Economic Dispatch Problems with Valve-Point Effects)

  • 정윤원;이주원;정상윤;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.848-849
    • /
    • 2007
  • This paper presents an efficient approach for solving the economic dispatch (ED) problems with valve-point effects using differential evolution (DE). A DE, one of the evolutionary algorithms (EAs), is a novel optimization method capable of handling nonlinear, non-differentiable, and nonconvex functions. And an efficient constraints treatment method (CTM) is applied to handle the equality and inequality constraints. The resultant DE-CTM algorithm is very effective in solving the ED problems with nonconvex cost functions. To verify the superiority of the proposed method, a sample ED problem with valve-point effects is tested and its results are compared with those of previous works. The simulation results clearly show that the proposed DE-CTM algorithm outperforms other state-of-the-art algorithms in solving ED problems with valve-point effects

  • PDF

미분진화 기반의 초단기 호우예측을 위한 특징 선택 (Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution)

  • 서재현;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.706-714
    • /
    • 2012
  • 본 논문에서는 대한민국의 국립기상연구소에서 제공한 최근 4년간의 데이터를 훈련 데이터, 검증 데이터 및 테스트 데이터로 나누어 초단기 호우 예측을 하고자 한다. 우리는 데이터 셋을 훈련 데이터, 검증 데이터와 테스트 데이터 세 부분으로 나눴다. 데이터의 차원이 커짐에 따라 해 공간의 크기가 지수적으로 증가하여 실험의 속도가 현저히 떨어지는 문제를 피하기 위하여 72개의 특징들 중에서 주요한 특징들만을 선택하게 되었다. 예측의 정확도를 높이기 위해 미분진화 알고리즘을 사용하였고, 진화연산의 적합도 함수로 두 개의 분류기를 선택하였는데, 일반적으로 우수한 성능을 보이는 서포트 벡터 머신(SVM)과 분류 속도가 빠른 최근린법(k-NN)을 사용하였다. 또한, 실험에 사용할 데이터 가공을 위해 언더샘플링과 정규화를 하였다. 진화연산의 적합도 함수로 SVM 분류기를 사용하였을 때 실험 결과가 대체로 우수하였는데, 미분진화 알고리즘 실험은 모든 특징을 선택한 실험보다 약 5 배 정도 우수한 성능을 보였고, 유전 알고리즘을 사용한 실험보다 약 1.36 배 정도 더 우수한 성능을 보였다. 실험 속도 면에서는 미분진화 알고리즘을 사용한 실험이 유전 알고리즘을 사용한 실험보다 약 20배 이상 실험 시간이 단축되었다.

ACDE2: 수렴 속도가 향상된 적응적 코시 분포 차분 진화 알고리즘 (ACDE2: An Adaptive Cauchy Differential Evolution Algorithm with Improved Convergence Speed)

  • 최태종;안창욱
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1090-1098
    • /
    • 2014
  • 이 연구는 단봉 전역 최적화 성능이 개선된 적응적 코시 분포 차분 진화 알고리즘을 제안한다. 기존 적응적 코시 분포 차분 진화 알고리즘은(ACDE) 개체의 다양성을 보장하여 다봉 전역 최적화 문제에 우수한 "DE/rand/1" 돌연변이 전략을 사용했다. 그러나 이 돌연변이 전략은 수렴 속도가 느려 단봉 전역 최적화 문제에 단점이 있다. 제안 알고리즘은 "DE/rand/1" 돌연변이 전략 대신 수렴 속도가 빠른 "DE/current-to-best/1" 돌연변이 전략을 사용했다. 이때, 개체의 다양성이 부족하여 발생할 수 있는 지역 최적해로의 수렴을 방지하기 위해서 매개변수 초기화 연산이 추가됐다. 매개변수 초기화 연산은 특정세대를 주기로 실행되거나 또는 선택 연산에서 모든 개체가 진화에 실패하는 경우 실행된다. 매개변수 초기화 연산은 각 개체들의 매개변수에 탐험적 특성이 높은 값을 할당하여 넓은 공간을 탐색할 수 있도록 보장한다. 성능 평가 결과, 개선된 적응적 코시 분포 차분 진화 알고리즘이 최신 차분 진화 알고리즘들에 비해 특히, 단봉 전역 최적화 문제에서 성능이 개선됨을 확인했다.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

진화계산 기반 인공에이전트를 이용한 교섭게임 (Bargaining Game using Artificial agent based on Evolution Computation)

  • 성명호;이상용
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.293-303
    • /
    • 2016
  • 근래에 진화 연산을 활용한 교섭 게임의 분석은 게임 이론 분야에서 중요한 문제로 다루어지고 있다. 본 논문은 교섭 게임에서 진화 연산을 사용하여 이기종 인공 에이전트 간의 상호 작용 및 공진화 과정을 조사하였다. 교섭게임에 참여하는 진화전략 에이전트들로서 유전자 알고리즘(GA), 입자군집최적화(PSO) 및 차분진화알고리즘(DE) 3종류를 사용하였다. GA-agent, PSO-agent 및 DE-agent의 3가지 인공 에이전트들 간의 공진화 실험을 통해 교섭게임에서 가장 성능이 우수한 진화 계산 에이전트가 무엇인지 관찰 실험하였다. 시뮬레이션 실험결과, PSO-agent가 가장 성능이 우수하고 그 다음이 GA-agent이며 DE-agent가 가장 성능이 좋지 않다는 것을 확인하였다. PSO-agent가 교섭 게임에서 성능이 가장 우수한 이유를 이해하기 위해서 게임 완료 후 인공 에이전트 전략들을 관찰하였다. PSO-agent는 거래 실패로 인해 보수를 얻지 못하는 것을 감수하고서라도 가급적 많은 보수를 얻기 위한 방향으로 진화하였다는 것을 확인하였으며, 반면에 GA-agent와 DE-agent는 소량의 보수를 얻더라도 거래를 성공시키는 방향으로 진화하였다는 것을 확인하였다.

Improving CMD Areal Density Analysis: Algorithms and Strategies

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권2호
    • /
    • pp.121-130
    • /
    • 2014
  • Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities ($\mathcal{A}$), and large variation in $\mathcal{A}$ are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.