• Title/Summary/Keyword: Differential Path

Search Result 167, Processing Time 0.024 seconds

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling (Pharmacokinetic Compartment Modeling을 이용한 나선식 CT에서의 간암-간 대조 곡선의 Simulation)

  • S.J. Kim;K.H. Lee;J.H. Kim;J.K. Han;B.G. Min
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.173-182
    • /
    • 1999
  • Contrast-enhanced CT has an important role in assessing liver lesions, the optimal protocol to get most effective result is not clear. The mein goal when deciding injention protocol is to optimize lesion detectability with rapid scanning when lesion to liver contrast is maximum. For this purpose, we developed a physiological model of the contrast medium enhancement based on the compartment modeling and pharmacokinetics. Blood supply to liver is achieved in two paths. This dual supply characteristic distinguishes the CT enhancement of liver from that of the other organs. The first path is by hepatic artery and to second, by portal vein. However, it is assumed that only gepatic artery can supply blood to hepatocellular carcinoma(HCC) compartment, thus, the difference of contrast enhancement is resulted between normal liver tissue and hepatic tumor. By solving differential equations for each compartment simultaneously using the computer program Matlab, CT contrast-enhancement curves were simulated. The simulated enhancement curves for aortic, hepatic, portal vein, and HCC compartments were compared with the mean enhancement curves from 24 patients exposed to the same protocols as the simulation. These enhancement curves showed a good agreement. Furthermore, we simulated lesion-to-liver curves for various injection protocols, and the effects were analyzed. The variables to be considered in the injection protocol were injection rate, dose, and concentration of contrast material. These data may help to optimize scanning protocols for better diagnosis.

  • PDF

Production of Diacylglycerol-Oil from Lipase-Catalyzed Reaction Using Soybean Oil and Glyceryl Monooleate (대두유와 Glyceryl Monooleate의 효소적 반응을 이용한 Diacylglycerol 함유 유지의 생산)

  • Jeon, Mi-Sun;Lee, Cho-Rong;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1559-1563
    • /
    • 2009
  • Scaled-up production of oil containing diacylglycerol (DAG), so called diacylglycerol-oil, was produced by lipase-catalyzed reaction. Mixture of soybean oil and glyceryl monooleate with 1:2 molar ratio was esterified with Lipozyme RMIM in a batch-type reactor at 55$^{\circ}C$ and 300 rpm during 6 hr. After short-path distillation for removal of monoacylglycerol and free fatty acid as reaction by-products, diacylglycerol-oil mainly consisted of DAG (29 area%) and TAG (71 area%). The major compositional fatty acids in diacylglycerol-oil were oleic (44.36 wt%), and linoleic acids (37.36 wt%). Acid value and iodine value of diacylglycerol-oil were 0.13 and 112.6, respectively. Solid fat content (SFC) of diacylglycerol-oil was observed after differential scanning calorimetry (DSC) analysis in which three melting peaks at -25.0, 0.1, and 11.2$^{\circ}C$ were shown.

A generation method of ASF mapping by the predicted ASF with the measured one in the Yeongil Bay (ASF 예측모델과 실측치를 이용한 영일만 해상 ASF 맵 생성기법)

  • Hwang, Sang-Wook;Shin, Mi Young;Choi, Yun Sub;Yu, Donghui;Park, Chansik;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • In order to establish eLoran system it needs the betterment of a receiver and a transmitter, the add of data channel to loran pulse for loran system information and the differential Loran for compensating Loran-c signal. Precise ASF database map is essential if the Loran delivers the high absolute accuracy of navigation demanded at maritime harbor entrance. In this study we developed the ASF mapping method using predicted ASFs compensated by the measured ASFs for maritime in the harbor. Actual ASF is measured by the legacy Loran signal transmitted from Pohang station in the GRI 9930 chain. We measured absolute propagation delay between the Pohang transmitting station and the measurement points by comparing with the cesium clock for the calculation of the ASFs. Monteath model was used for the irregular terrain along the propagation path in the Yeongil Bay. We measured the actual ASFs at the 12 measurement points over the Yeongil Bay. In our ASF-mapping method we estimated that the each offsets between the predicted and the measured ASFs at the 12 spaced points in the Yeongil. We obtained the ASF map by adjusting the predicted ASF results to fit the measured ASFs over Yeungil bay.

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.

A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems (3G 통신 시스템 응용을 위한 0.31pJ/conv-step의 13비트 100MS/s 0.13um CMOS A/D 변환기)

  • Lee, Dong-Suk;Lee, Myung-Hwan;Kwon, Yi-Gi;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.75-85
    • /
    • 2009
  • This work proposes a 13b 100MS/s 0.13um CMOS ADC for 3G communication systems such as two-carrier W-CDMA applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs a four-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. Area-efficient high-speed high-resolution gate-bootstrapping circuits are implemented at the sampling switches of the input SHA to maintain signal linearity over the Nyquist rate even at a 1.0V supply operation. The cascode compensation technique on a low-impedance path implemented in the two-stage amplifiers of the SHA and MDAC simultaneously achieves the required operation speed and phase margin with more reduced power consumption than the Miller compensation technique. Low-glitch dynamic latches in sub-ranging flash ADCs reduce kickback-noise referred to the differential input stage of the comparator by isolating the input stage from output nodes to improve system accuracy. The proposed low-noise current and voltage references based on triple negative T.C. circuits are employed on chip with optional off-chip reference voltages. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.70LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 64.5dB and a maximum SFDR of 78.0dB at 100MS/s, respectively. The ABC with an active die area of $1.22mm^2$ consumes 42.0mW at 100MS/s and a 1.2V supply, corresponding to a FOM of 0.31pJ/conv-step.

Design of CMOS Multifunction ICs for X-band Phased Array Systems (CMOS 공정 기반의 X-대역 위상 배열 시스템용 다기능 집적 회로 설계)

  • Ku, Bon-Hyun;Hong, Song-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.6-13
    • /
    • 2009
  • For X-band phased array systems, a power amplifier, a 6-bit phase shifter, a 6-bit digital attenuator, and a SPDT transmit/receive (T/R) switch are fabricated and measured. All circuits are demonstrated by using CMOS 0.18 um technology. The power amplifier has 2-stage differential and cascade structures. It provides 1-dB gain-compressed output power ($P_{1dB}$) of 20 dBm and power-added-efficiency (PAE) of 19 % at 8-11 GHz frequencies. The 6-bit phase shifter utilizes embedded switched filter structure which consists of nMOS transistors as a switch and meandered microstrip lines for desired inductances. It has $360^{\circ}$ phase-control range and $5.6^{\circ}$ phase resolution. At 8-11 GHz frequencies, it has RMS phase and amplitude errors are below $5^{\circ}$ and 0.8 dB, and insertion loss of $-15.7\;{\pm}\;1,1\;dB$. The 6-bit digital attenuator is comprised of embedded switched Pi-and T-type attenuators resistive networks and nMOS switches and employes compensation circuits for low insertion phase variation. It has max. attenuation of 31.5 dB and 0.5 dB amplitude resolution. Its RMS amplitude and phase errors are below 0.4 dB and $2^{\circ}$ at 8-11 GHz frequencies, and insertion loss is $-10.5\;{\pm}\;0.8\;dB$. The SPDT T/R switch has series and shunt transistor pairs on transmit and receive path, and only one inductance to reduce chip area. It shows insertion loss of -1.5 dB, return loss below -15 dB, and isolation about -30 dB. The fabricated chip areas are $1.28\;mm^2$, $1.9mm^2$, $0.34\;mm^2$, $0.02mm^2$, respectively.