• Title/Summary/Keyword: Different Materials

Search Result 14,747, Processing Time 0.046 seconds

Effect of Different Solid Lubricants in the Automotive Friction Material on Friction Characteristics (자동차 브레이크용 마찰재에 사용되는 고체 윤활제에 따른 제동특성에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.17-23
    • /
    • 1998
  • Friction materials with three different formulations containing different solid lubricants were investigated to study the role of lubricants on the friction performance. The three friction materials contained graphite 10 vol.%, graphite 7 vol.%+$MoS_2$ 3 vol.%, and graphite 7 vol.%+$Sb_2S_3$ 3 vol.%, respectively, with the same amount of other ingredients. Results of this work showed that each formulation with different lubricants had unique advantages and disadvantages. The friction materials containing graphite 7 vol.%+$MoS_2$ 3 vol.% and graphite 7 vol.%+$Sb_2S_3$ 3 vol.% showed better resistance to fading and improved friction stability compared to the friction materials containing graphite only as a lubricant. However, the friction materials with two lubricants (graphite+$MoS_2$ or $Sb_2S_3$) showed disadvantages on DTV generation and rotor wear.

Investigation of Friction and Wear Characteristics of Automotive friction Materials containing different relative amounts of solid lubricants(Graphite, MoS$_2$, and Sb$_2$S$_3$) (자동차용 마찰재에 사용되는 고체윤활제의 성분비에 따른 마찰 밀 마모 특성에 관한 연구)

  • Choi, Nak-Cheon;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.265-271
    • /
    • 1999
  • The effects of solid lubricants on wear and friction characteristics of friction materials were studied using a pad-on-disk type friction tester. Friction materials with four different formulations containing different relative amounts of solid lubricants(graphite, MoS$_2$, and Sb$_2$S$_3$) were investigated. Results of this work showed that each formulation with different lubricants had unique friction characteristics. Friction material containing rich MoS$_2$ showed excellent friction stability at different friction conditions. However friction material containing rich Sb$_2$S$_3$revealed high wear of friction materials.

  • PDF

Research Progress of Antibiotic Pollution and Adsorption Materials in Aquatic environment

  • Zheng, Kun;Deng, ChengXun;Deng, Xu;Yu, ZhiMin
    • Journal of Urban Science
    • /
    • v.8 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • China is the great powers of use and production of antibiotics.The current process of sewage treatment plants can not effectively remove antibiotics in water. Chinese scholars have detected different kinds of antibiotics in major waters of the country, which have potential harm to human body. Among all kinds of antibiotic treatment technologies, adsorption removal technology has the advantages of simple operation, low cost and high removal efficiency. It is a widely concerned antibiotic removal technology. However, at present, few materials have been put into practical application, and more materials with low cost and high efficiency need to be found. Different adsorptive materials have different adsorptivity to different antibiotics. For different antibiotics, different adsorptive materials can be integrated in the future, and the theory can be extended to application.

Seizure Failure of Engine Crankshaft Bearings

  • Ni, X.;Cheng, H.S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.162-171
    • /
    • 1995
  • The application of reciprocating engine crankshaft bearings is of particular importance and interest among the plain bearing, not only because the sheer volume of intemal combustion engines now produced, but because the severe operating conditions they are subjected to. Demands for better performances of crankshaft bearings have provide an important impetus in the development of bearings and bearing materials. As engine design progresses toward higher outpt and higher efficiency, crankshaft bearings must perform under more seveve operating conditions. Higher load, temperature, and speed as well as lower viscosity oil are applied to the bearing sysem, resulting in a smaller minimum oil film thickness. This means more solid-solid contact between the shaft and bearing, and the bearing is exposed to more danger of seizure. Some engines may experience bearing seizure problems. However, understanding about the seizure behavior and mechanism is far from being enough. Seizure resistance of a bearing-shaft system will be affected by the properties of the shaft and bearing, especially their materials and surface texture. Commonly used engine bearing materials include Al-Pb-Si, Al-Sn-Si, Al-Sn, and Cu-Pb with Pb-Sn-Cu overlay. These materials have very different properties. They showed different behaviors dering seizure tests and seizure may occur with different mechanism for different bearing material. Shaft materials also affect the seizure resistance of the system. Surface texture of the bearing and shaft have apparent effects on the lubrication and solid-solid contact pattern, and therefore will affect the seizure behavior of the system. Bearings and shafts which are made of different materials and have different surface textures have been tested and analyzed. Their effects on seizure resistance are discussed and possible seizure mechanisms for different beatings are presented in this paper.

Photoluminescence property of vertically aligned ZnO nanorods.

  • Das, S.N.;Kar, J.P.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.25.2-25.2
    • /
    • 2009
  • Vertically aligned zinc oxide(ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate with different deposition condition. Based on the surface morphology, ZnO nanostructures are divided into three types: nanoneedles, nanonails and nanorods with rounded tip. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. Low temperature photoluminescence measurements do not show any significant yellow emission, but the near band edge excitonic emission shows very strong dependence with the surface morphology. The recombination properties are expected to be different due to different surface-to-volume ratio and distribution of potential fluctuations of intrinsic defects.

  • PDF

CRUSHING CHARACTERISTIC OF DOUBLE HAT-SHAPED MEMBERS OF DIFFERENT MATERIALS JOINED BY ADHESIVE BONDING AND SELF-PIERCING RIVET

  • Lee, M.H.;Kim, H.Y.;Oh, S.I.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.565-570
    • /
    • 2006
  • The development of a light-weight vehicle is in great demand for enhancement of fule efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as aluminum and magnesium. However, if such materials are used in vehicles, there are often instances when different materials such as aluminum and steel need to be joined to each other. The conventional joining method, namely resistance spot welding, cannot be used in joining different materials. Self-piercing rivet(SPR) and adhesive bonding, however, are good alternatives to resistance spot welding. This paper is concerned with the crushing test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding. Various parameters of crashworthiness are analyzed and evaluated. Based on these results, the applicability of SPR and adhesive bonding are proposed as an alternative to resistance spot welding.

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Characteristics of Shear Transfer in Joint Interface Consisting of Different Materials (이종재료의 타설면을 가지는 접합계면의 전단전달 특성)

  • 김태곤;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1133-1138
    • /
    • 2000
  • The interface necessarily exists in joints using cement mortar, UP(Unsaturated Polyester : UP) mortar and SBR(SBR-latex) mortar. Characteristics of shear transfer in joint interface consisting of different materials are studied with experimental and analytical methods. The uniaxial compressive shear experiments are accomplished with various angle of inclination (35, 45, 55, 65, 75°), materials of old and new-cast mortar. In this study, The results are as follows ① Mohr-coulomb's slip theory be applied to the interface consisting different materials ② The cohesion of UP mortar is superior to that f cement mortar, SBR mortar.

  • PDF

Investigation of the effects of storage time on the dimensional accuracy of impression materials using cone beam computed tomography

  • Alkurt, Murat;Duymus, Zeynep Yesil;Dedeoglu, Numan
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.380-387
    • /
    • 2016
  • PURPOSE. The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). MATERIALS AND METHODS. Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (${\alpha}=.05$). RESULTS. For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast (P<.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions (P<.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods (P<.05). CONCLUSION. The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions.

Experimental Studies on Eye Injury Risks by Different BB Pellet Materials (BB Pellet 재질에 따른 안구 손상 위험성에 관한 실험적 연구)

  • Kim, Hyung-Suk;Park, Dal-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.20-24
    • /
    • 2012
  • Experimental studies were performed to investigate the eye injury risks by different BB pellet materials. Four different BB pellet materials were used: plastic (P), silicon (S), rubber (R) and plastic covered with silicon (SR). The BB pellet images penetrating into the gelatine simulant were recorded by a high-speed video camera. The results obtained from the different pellet materials were discussed in terms of impact velocity and penetration depth; threshold velocity and projectile sectional density; eye injury risks by normalized energies. It was found that the P pellets caused higher impact velocity while the lower was SR pellets. The penetration depth and threshold velocity of the pellets were dependent on the impact velocity of the pellets, and the P pellets resulted in the higher eye injury risk while the lower was SP.