This review summarizes gender differences in pharmacokinetics, pharmacodynamics, and adverse drug reactions. Gender differences in pharmacokinetics are categorized by four major factors: absorption/bioavailability, distribution, metabolism, and elimination. There are sex-based differences in gastric emptying time, gastric alcohol dehydrogenase activity, apparent volume of distribution, ${\alpha}1$-acid glycoprotein level, phase I (CYP) and phase II metabolizing enzymes, glomerular filtration rate, and drug transporters. This review also reports gender differences in pharmacokinetics and pharmacodynamics of cardiovascular agents, central nervous system acting agents and antiviral agents. In addition, it has been reported that females experience more adverse reactions such as coughing, tachycardia, nausea, vomiting, rash, hypersensitivity, hepatotoxicity, and metabolic disorder after taking cardiovascular, central nervous system acting and antiviral agents. Therefore, in order to provide optimal drug dosage regimens both in male and female, gender differences in pharmacokinetics, pharmacodynamics, and adverse drug reactions must be considered.
Pharmacokinetics of aucubin, an irdoid glucoside, was compared in rats of experimental hepatic failure(EHF). EHF was induced by CCI$_{4}$ or D-galactosamine pretreatment. This work was designed to find out any differences in the pharmacokinetics of aucubin that may explain the different protective effect of aucubin on CCI$_{4}$- and galactosamine-induced EHF : aucubin reportedly protected CCI$_{4}$-inducing hepatotoxicity effectively, but did not for galactosamine-hepatotoxicity. EHF was induced by intraperitoneal injection Of CCI$_{4}$(0.9ml/kg) or galactosamine(250 mg/kg) to Wistar rats 24 hr before the pharmacokinetic study. The rats were fasted during the 24 hr. Aucubin was iv injected at a dose of 15 mg/kg and the plasma aucubin was assayed by HPLC. There were no significant differences in the pathophysiologies(body weight, liver weight, GTP, hematocrit, blood cell distrbution and plasma protein binding of aucubin) between the two EHF models except GOP which was significantly (p<0.05) higher in CCI$_{4}$-than in galactosamine-EHF. On the other hand, pharmacokinetics of aucubin such as total cleatance(CL$_{t}$), distribution volume at steady-state(Vd$_{ss}$), and mean residence time(MRT) differed significantly(p<0.05) between the models : for example, CL$_{t}$ was increased two fold by CCI$_{4}$, but not by galaclosamine ; Vd$_{ss}$, in galactosamine-EHF was higher than that in CCI$_{4}$-EHF ; MRT was decreased by CCI$_{4}$, but increased conversely by galactosamine. The increase of CL$_{t}$(and decrease of MRT) in rats of CCI$_{4}$-EHF was contrary to the general expectation for the hepatic failure : most of the hepatic failures have been known to decrease CL$_{t}$ of the administered drugs. Whether the difference in the pharmacokinetics is responsible for the different protective effect of aucubin against the two EHF models is of interest. However, much more studies on biliary excretion, urinary excretion, and hepatic uptake in cellular level should be preceded before any conclusions are made on the role of different pharmacokinetics on the different pharmacology of aucubin.
Enviromental differences in gentamicin pharmacokinetics by using population pharmacokinetic methods were compared with 20 Korean patients and 24 Korean-American appendicitis patients. Two to six blood specimens were collected from all patients at the following times : just before a regularly scheduled infusion and at 0.5 hour after the end of a 0.5 hour infusion. Nonparametric expected maximum (NPEM) algorithm for population modeling was used. The estimated parameters were the elimination rate constant (K), the slope (KS) of the relationship between K versus creatinine clearance ($C_{cr}$), the apparent volume of distribution (V), the slope (VS) of the relationship between V versus weight, gentamicin clearance (CL) and the slope (CS) of the relationship between CL versus $C_{cr}$ and the V. The output includes two marginal probability density function (PDF), means, medians, modes, variance and CV%. The mean K (KS) were $0.402{\pm}0.129\;h^{-1}(0.00486{\pm}0.00197\;[h{\cdot}ml/min/1.73\;m^2]^{-1})$ and $0.411{\pm}0.135\;h^{-1}(0.00475{\pm}0.00180\;[h{\cdot}ml/min/1.73\;m^2]^{-1})$ for Korean and Korean-American populations, respectively. The mean V (VS) were not different at $14.3{\pm}3.6l(0.241{\pm}0.0511l/kg)$ and $15.1{\pm}3.84l(0.239{\pm}0.0492l/kg)$ for Korean and Korean-American populations, respectively (p>0.2). The mean CL (CS) were $5.68{\pm}1.69l/h(0.0714{\pm}0.0222l/kg[h{\cdot}ml/min/1.73\;m^2])$ and $5.70{\pm}1.77l/h(0.0701{\pm}0.0215l/kg[h{\cdot}ml/min/1.73\;m^2])$ for Korean and Korean-American populations, respectively. There were no enviromental differences in gentamicin pharmacokinetics between Korean and Korean-American appendicitis patients.
To determine the reason of individual variation of the effect of caffeine, the absorption and the disposition of caffeine were studied in caffeine sensitive and caffeine nonsensitive volunteers. And also to study the effect of obesity on caffeine pharmacokinetics, the caffeine disposition in the obese rat and in the lean rat were investigated respectively. In result the caffeine sensitive group showed a longer terminal half-life of caffeine(7.35$\pm$0.71 hr : 5.49$\pm$0.73 hr) and a larger AUC (55.42$\pm$9.09 $\mu\textrm{g}$.$ml^{-1}$.hr:44.0$\pm$7.81$\mu\textrm{g}$.$ml^{-1}$.hr) than that of caffeine non-sensitive group without statistical significance. The obese rat showed a longer terminal half-life (3.47 hr : 2.31 hr) and a larger AUC(35.3 $\mu\textrm{g}$.$ml^{-1}$.hr:26.97$\mu\textrm{g}$.$ml^{-1}$.hr) than that of the lean rat. But there was no correlation in the amount of daily caffeine consumption and obesity. In conclusion, we suggest that the individual variation of the effect of caffeine are being caused from the individual differences of caffeine susceptibility or tolerance rather than the differences of the genetic metabolic capacity or metabolic tolerance.
Because nonsteroidal anti-inflammatory drugs are reported to cause fluid retention and hypertension by inhibition of prostaglandin synthesis, the effects of piroxicam on pharmacodynamics and pharmacokinetics of nifedipine were studied in male spontaneously hypertensive rats. They received nifedipine (0.5 mg/kg) alone or combined with piroxicam (5 mg/kg) intravenously. Plasma levels norepinephrine, an index of sympathetic stimulation, were measured prior to each treatment and 5 min after drug administration. Changes in blood pressure were examined serially and blood samples for analysis of nifedipine were also taken for 6 hr following drug administration. Plasma nifedipine concentration were assayed by HPLC and pharmacokinetic parameters were calculated. Blood pressure was reduced (p<0.01), but plasma norepinephrine level was increased (p<0.05) by nifedipine administration. Anti-hypertensive effect of nifedipine was potentiated (p<0.05) by piroxicam coadministration, but effect of nifedipine on plasma norepinephrine level was not affected. In case of rats received nifedipine and piroxicam, plasma nifedipine concentrations were higher (p<0.05) than those from rats received nifedipine alone at 2,3,4,5 and 6 hours following drug administration. The area under the plasma concentration vs. time curve was increased (p<0.05), while the elimination rate constant was decreased (p<0.01) by piroxicam coadministration. No significant differences were observed in the plasma clearance, apparent volume of distribution and elimination half-life. Thus, piroxicam not only potentiated antihypertensive effect of nifedipine, but also altered nifedipine pharmacokinetics in the rats. It is concluded that the potentiation of nifedipine antihypertensive effect might correlate with the increment of its plasma concentration by piroxicam coadministration.
The differences in pharmacokinetic behavior and tissue distribution of verapamil and its enantiomers were investigated in rats. In high-performance liquid chromatographic method, an achiral ODS column (150 mm $\times$ 4.6 mm i.d.) with the mobile phase consisting of methanol-water (73:30, v/v) was used for the determination of the concentration for racemic verapamil, and a Chiralcel OJ column (250 mm$\times$4.6 mm i.d.) with the mixture of n-haxane-ethanol-triethylamine (85:15:0.2, v/v/v) as mobile phase was used to determine the concentrations of verapamil enantiomers. A fluorescence detector in the analytical system was set at excitation and emission wavelengths of 275 nm and 315 nm. The differences between enantiomers were apparent in the pharmacokinetics in rats. The area under the concentration-time curve (AUC) of S-(-) verapamil was higher than that of R-(+) verapamil. The half-distribution time ($T_{1/2(\alpha)}$) of S-(-) verapamil which distributing to tissue from blood was shorter than that of R-(+) verapamil, but the elimination half-time ($T_{1/2(\beta)}$) was longer in rat following oral administration of racemic verapamil. At 1.3 h after oral administration of racemic verapamil, however, there were no significant differences between enantiomers for the distributions in major tissues such as heart, cerebrum, cerebellum, liver, spleen and kidney.
Background: Ginsenoside compound K (CK) is a promising drug candidate for rheumatoid arthritis. This study examined the impact of polymorphisms in NR1I2, adenosine triphosphate-binding cassette (ABC) transporter genes on the pharmacokinetics of CK in healthy Chinese individuals. Methods: Forty-two targeted variants in seven genes were genotyped in 54 participants using Sequenom MassARRAY system to investigate their association with major pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD). Subsequently, molecular docking was simulated using the AutoDock Vina program. Results: ABCC4 rs1751034 TT and rs1189437 TT were associated with increased exposure of CK and decreased exposure of 20(S)-PPD, whereas CFTR rs4148688 heterozygous carriers had the lowest maximum concentration ($C_{max}$) of CK. The area under the curve from zero to the time of the last quantifiable concentration ($AUC_{last}$) of CK was decreased in NR1I2 rs1464602 and rs2472682 homozygous carriers, while $C_{max}$ was significantly reduced only in rs2472682. ABCC4 rs1151471 and CFTR rs2283054 influenced the pharmacokinetics of 20(S)-PPD. In addition, several variations in ABCC2, ABCC4, CFTR, and NR1I2 had minor effects on the pharmacokinetics of CK. Quality of the best homology model of multidrug resistance protein 4 (MRP4) was assessed, and the ligand interaction plot showed the mode of interaction of CK with different MRP4 residues. Conlusion: ABCC4 rs1751034 and rs1189437 affected the pharmacokinetics of both CK and 20(S)-PPD. NR1I2 rs1464602 and rs2472682 were only associated with the pharmacokinetics of CK. Thus, these hereditary variances could partly explain the interindividual differences in the pharmacokinetics of CK.
Shin, Jae Won;Jung, Yun Seob;Park, Kyungsoo;Lee, Soon Min;Eun, Ho Seon;Park, Min Soo;Park, Kook In;Namgung, Ran
Clinical and Experimental Pediatrics
/
v.60
no.2
/
pp.50-54
/
2017
Purpose: The aims of this study were to evaluate the safety and pharmacokinetics of levetiracetam (LEV) in neonates with seizures and to establish a population pharmacokinetics (PPK) model by using the software NONMEM. Methods: A retrospective analysis of 18 neonatal patients with seizures, who were treated with LEV, including 151 serum samples, was performed. The mean loading dose was 20 mg/kg, followed by a mean maintenance dose of 29 mg/kg/day. Results: Seventeen neonates (94%) had seizure cessation within 1 week and 16 (84%) remained seizure-free at 30 days under the LEV therapy. The mean serum concentration of LEV was $8.7{\mu}g/mL$. Eight samples (5%) were found above the therapeutic range. No serious adverse effects were detected. In the PPK analysis for Korean neonates, the half-life was 9.6 hours; clearance, 0.357 L/hr; and volume of distribution, 4.947 L, showing differences from those in adults. Conclusion: LEV is a safe and effective option for the treatment of neonatal seizures with careful therapeutic drug monitoring.
The purpose of this investigation was to determine pharmacokinetic parameters of gentamicin using nonlinear least square regression(NLSR) and Bayesian analysis in Korean normal volunteers and gastrointestinal surgical patients. Nonparametric expected maximum(NPEM) method for population pharmacokinetic parameters was used. Gentamicin was administered every 8 hours for 3 days by infusion over 30 minutes. The volume of distribution(V) and elimination rate constant(K) of gentamicin were $0.226{\pm}0.032,\;0.231{\pm}0.063L/Kg\;and\;0.357{\pm}0.024,\;0.337{\pm}0.041hr^{-1}$ for normal volunteers and gastrointestinal surgical patients using NLSR analysis. Population pharmacokinetic parameters, KS and VS were $0.00344{\pm}0.00049(hr{\cdot}ml/min/1.73m^2)^{-1}\;and\;0.214{\pm}0.0502L/Kg$ for gastrointestinal surgical patients using NPEM method. The V and K were $0.216{\pm}0.048L/Kg\;and\;0.336{\pm}0.043hr^{-1}$ for gastrointestinal surgical patients using Bayesian analysis. There were no differences in gentamicin pharmacokinetics between NLSR and Bayesian analysis in gastrointestinal surgical patient.
The purpose of this study was to determine pharmacokinetic parameters of vancomycin using two point calculation(TPC) and Bayesian methods in 16 Korean normal volunteers and 15 g astric cancer patients. Nonparametric expected maximum(NPEM) algorithm for calculation of population pharmacokinetic parameter was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered 1.0g every 12 hrs for 3 days by IV infusion over 60 minutes. The volume of distribution(Vd), elimination rate constant(Kel) and total body clearance(CLt) of vancomycin in normal volunteers using TPC method were $0.34{\pm}0.06 L/kg,\; 0.19{\pm}0.01 hr^{-1}$ and $4.08 {\pm} 0.93 L/hr$, respectively, The Vd, Kel and CLt of vancomycin in gastric cancer patients using TPC method were $0.46 {\pm} 0.06 L/kg, 0.17{\pm}0.02 hr^{-1}$ and $4.84 {\pm} 0.57 L/hr$ respectively. There were significant differences(p<0.05) in Vd. Kel and CLt between normal volunteers and gastric cancer patients. Polpulation pharmacokinetic parameter, the slope(KS) of the relationship beetween Kel versus creatinine Clearance, and the Vd were $0.00157{\pm}0.00029(hr{\cdot}mL/min/1.73m^2)^{-1},\; 0.631 {\pm} 0.0036 L/kg$ in gastric cancer patients using NPEM algorithm respectively. The Vd and Kel were $0.63{\pm}0.005 L/kg, 0.15 {\pm}0.027 hr^{-1}$ for gastric cancer patients using Bayesian method. There were significant differences(p<0.05) in vancomycin pharmacokinetics between Bayesian and TPC methods. It is considered that the population parameter in the patient population is necessary for effective Bayesian method in clinical pharmacy practise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.