• Title/Summary/Keyword: Difference matrix

Search Result 964, Processing Time 0.033 seconds

Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material (폴리아크릴산 나트륨 염이 함침된 흡수성 고분자 복합 필름의 제조 및 특성 연구)

  • Lee, Youn Suk;Choi, Hong Yeol;Park, Insik
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.530-537
    • /
    • 2014
  • Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at $25^{\circ}C$. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

The Study on Optimal Image Processing and Identifying Threshold Values for Enhancing the Accuracy of Damage Information from Natural Disasters (자연재해 피해정보 산출의 정확도 향상을 위한 최적 영상처리 및 임계치 결정에 관한 연구)

  • Seo, Jung-Taek;Kim, Kye-Hyun
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2011
  • This study mainly focused on the method of accurately extracting damage information in the im agery change detection process using the constructed high resolution aerial im agery. Bongwha-gun in Gyungsangbuk-do which had been severely damaged from a localized torrential downpour at the end of July, 2008 was selected as study area. This study utilized aerial im agery having photographing scale of 30cm gray image of pre-disaster and 40cm color image of post-disaster. In order to correct errors from the differences of the image resolution of pre-/post-disaster and time series, the prelim inary phase of image processing techniques such as normalizing, contrast enhancement and equalizing were applied to reduce errors. The extent of the damage was calculated using one to one comparison of the intensity of each pixel of pre-/post-disaster im aged. In this step, threshold values which facilitate to extract the extent that damage investigator wants were applied by setting difference values of the intensity of pixel of pre-/post-disaster. The accuracy of optimal image processing and the result of threshold values were verified using the error matrix. The results of the study enabled the early exaction of the extents of the damages using the aerial imagery with identical characteristics. It was also possible to apply to various damage items for imagery change detection in case of utilizing multi-band im agery. Furthermore, more quantitative estimation of the dam ages would be possible with the use of numerous GIS layers such as land cover and cadastral maps.

Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with two concentrations of expressed recombinant human bone morphogenetic protein 2

  • Choi, Hyun-Min;Park, No-Je;Jamiyandorj, Otgonbold;Choi, Kyung-Hee;Hong, Min-Ho;Oh, Seung-Han;Park, Young-Bum;Kim, Sung-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: The aim of this study was to determine whether biphasic calcium phosphate (BCP) bone substitute with two different concentrations of Escherichia coli-expressed recombinant human bone morphogenetic protein 2 (ErhBMP-2) enhances new bone formation in a standardized rabbit sinus model and to evaluate the concentration-dependent effect of ErhBMP-2. Methods: Standardized, 6-mm diameter defects were made bilaterally on the maxillary sinus of 20 male New Zealand white rabbits. Following removal of the circular bony windows and reflection of the sinus membrane, BCP bone substitute without coating (control group) was applied into one defect and BCP bone substitute coated with ErhBMP-2 (experimental group) was applied into the other defect for each rabbit. The experimental group was divided into 2 subgroups according to the concentration of ErhBMP-2 (0.05 and 0.5 mg/mL). The animals were allowed to heal for either 4 or 8 weeks and sections of the augmented sinus and surrounding bone were analyzed by microcomputed tomography and histologically. Results: Histologic analysis revealed signs of new bone formation in both the control and experimental groups with a statistically significant increase in bone formation in experimental group 1 (0.05 mg/mL ErhBMP-2 coating) after a 4-week healing period. However, no statistically significant difference was found between experimental group 1 and experimental group 2 (0.5 mg/mL ErhBMP-2 coating) in osteoinductive potential (P<0.05). Conclusions: ErhBMP-2 administered using a BCP matrix significantly enhanced osteoinductive potential in a standardized rabbit sinus model. A concentration-dependent response was not found in the present study.

Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2

  • Han, Seung-Hee;Kim, Kyoung-Hwa;Han, Jung-Seok;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.227-233
    • /
    • 2011
  • Purpose: The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. Methods: MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days. Results: At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7. Conclusions: The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).

Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study

  • Kim, Young-Kyun;Lee, Junho;Yun, Ji-Young;Yun, Pil-Young;Um, In-Woong
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.216-221
    • /
    • 2014
  • Purpose: This retrospective study compares the amount of bone resorption around implants between an autogenous tooth bone graft (AutoBT) and a synthetic bone graft after a bone-added crestally approached sinus lift with simultaneous implant placements. Methods: In all, 37 patients participated in this study. Seventeen patients were grouped as group I and underwent an AutoBT-added sinus lift using the crestal approach. The remaining 20 patients were grouped as group II and underwent synthetic bone grafting. Both groups received the implant placements simultaneously. Of the 37 participating patients, only 22 patients were included in the final results: Eleven patients of group I and 11 patients of group II. Before the surgery, the distance from the alveolar crest to the sinus floor was measured using panoramic radiography. After the surgery, the distance was measured again from the neck of the implant thread to the most superior border of the added graft materials. Then, the amount of sinus lift was calculated by comparing the two panoramic radiographs. After a year, a panoramic radiograph was taken to calculate the resorption of the bone graft material from the radiograph that was taken after the surgery. The significance of the resorption amount between the two types of graft materials was statistically analyzed. Results: The bone height was increased to an average of 4.89 mm in group I and 6.22 mm in group II. The analysis of panoramic radiographs 1 year after the surgery showed an average bone resorption of 0.76 mm and 0.53 mm, respectively. However, the degree of lifting (P=0.460) and the amount of bone-grafted material resorption (P=0.570) showed no statistically significant difference. Conclusions: Based on this limited study, AutoBT can be considered a good alternative bone graft to a synthetic bone graft in a bone-added sinus lift, when extraction is necessary prior to the surgery.

THE MANDIBULAR GROWTH EFFECT OF THE BOTULINUM TOXIN TYPE A INJECTION INTO UNILATERAL MASSSTER MUSCLE OF GROWING RAT (성장기 쥐의 편측 교근에 주사한 보툴리눔 A형 독소가 하악골 성장에 미치는 영향)

  • Kwak, So-Youn;Park, Ki-Tae;Kim, Ji-Yeon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.433-439
    • /
    • 2009
  • The purpose of this study was to assess the effect on mandibular growth of botulinum toxin type A (BTXA) injection into the unilateral massester muscle of growing rats at three different growing stages. Thirty six male Sprague-Dawley rats were divided into three groups according to the age (group 1: 4 week-old, group 2: 5week-old, group 3: 6week-old). Then each group was randomly divided into 3 subgroups (control group, unilateral injection group, bilateral injection group). Experimental animals were sacrificed after 4 weeks. Then the jaw measurements were evaluated. The results were as follows: 1. In the group 1, mandibular body length, condylar height and coronoid process height of the unilateral group(BTXA side) and the bilateral group were shorter than those of the control group (p<0.05). 2. In the group 2, anterior region height, condylar height, coronoid process height of the unilateral group(BTXA side) and the bilateral group were shorter than those of the control group (p<0.05). 3. In the group 3, mandibular body length, condylar height, coronoid process height of the unilateral group(BTXA side) and the bilateral group were shorter than those of the control group (p<0.05). 4. There was no significant difference in mandibular measurements between the control side and the injection side in the unilateral group in all age groups (p>0.05).

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.