• Title/Summary/Keyword: Difference equations

Search Result 1,391, Processing Time 0.029 seconds

Self-Tuning Pole-Placement Control Of Robotic Manipulators With An Inverse Modela (로보트 매니퓰레이터의 역모델을 갖는 자기동조 극배치 제어)

  • 이은옥;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.50-53
    • /
    • 1988
  • This paper presents an approach to the position control of a robot manipulator by using a self-tuning pole-placement controller with an inverse model. The linearized independent difference equations of manipulator motion are obtained, and the parameters of these models are estimated on line. The controller is composed of two parts, the primary controller obtains desired torques by using an inverse model and the secondary controller computes variational torques on the basis of induced perturbation equations by minimizing a quadratic criterion with a closed-loop pole-placement. Simulation is performed to demonstrate the effectiveness of this approach.

  • PDF

STABILITY OF POSITIVE PERIODIC NUMERICAL SOLUTION OF AN EPIDEMIC MODEL

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • We study an age-dependent s-i-s epidemic model with spatial diffusion. The model equations are described by a nonlinear and nonlocal system of integro-differential equations. Finite difference methods along the characteristics in age-time domain combined with finite elements in the spatial variable are applied to approximate the solution of the model. Stability of the discrete periodic solution is investigated.

  • PDF

RECURSIVE TWO-LEVEL ILU PRECONDITIONER FOR NONSYMMETRIC M-MATRICES

  • Guessous, N.;Souhar, O.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.19-35
    • /
    • 2004
  • We develop in this paper some preconditioners for sparse non-symmetric M-matrices, which combine a recursive two-level block I LU factorization with multigrid method, we compare these preconditioners on matrices arising from discretized convection-diffusion equations using up-wind finite difference schemes and multigrid orderings, some comparison theorems and experiment results are demonstrated.

A Review on The Field Model for Fire Simulation (화재 Simulation에서의 Field Model)

  • 김진곤
    • Fire Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 1994
  • The review of field model for fire simulation is presented. The approach to predict ire growth by solving the conservation equations over time and 2- or 3-dimentional space with appropriate boundary conditions is called field model. The finite difference method is adopted to solve the governing equations. The results is give qualititively and quantitatively good results but complicate and difficult to handle. But it is useful tool to understand detail phenomenons and to make decision for fire safety.

  • PDF

EFFICIENCY ANALYSIS OF A DOMAIN DECOMPOSITION METHOD FOR THE TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Jun, Younbae
    • East Asian mathematical journal
    • /
    • v.37 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this paper, we analyze the efficiency of a domain decomposition method for the two-dimensional telegraph equations. We formulate the theoretical spectral radius of the iteration matrix generated by the domain decomposition method, because the rate of convergence of an iterative algorithm depends on the spectral radius of the iteration matrix. The theoretical spectral radius is confirmed by the experimental one using MATLAB. Speedup and operation ratio of the domain decomposition method are also compared as the two measurements of the efficiency of the method. Numerical results support the high efficiency of the domain decomposition method.

NON-OVERLAPPING RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • In this paper, a non-overlapping rectangular domain decomposition method is presented in order to numerically solve two-dimensional telegraph equations. The method is unconditionally stable and efficient. Spectral radius of the iteration matrix and convergence rate of the method are provided theoretically and confirmed numerically by MATLAB. Numerical experiments of examples are compared with several methods.

Effect of axial stretching on large amplitude free vibration of a suspended cable

  • Chucheepsakul, Somchai;Wongsa, Sanit
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2001
  • This paper presents the effect of axial stretching on large amplitude free vibration of an extensible suspended cable supported at the same level. The model formulation developed in this study is based on the virtual work-energy functional of cables which involves strain energy due to axial stretching and work done by external forces. The difference in the Euler equations between equilibrium and motion states is considered. The resulting equations govern the horizontal and vertical motion of the cables, and are coupled and highly nonlinear. The solution for the nonlinear static equilibrium configuration is determined by the shooting method while the solution for the large amplitude free vibration is obtained by using the second-order central finite difference scheme with time integration. Numerical examples are given to demonstrate the vibration behaviour of extensible suspended cables.

ANALYSIS OF QUEUEING MODEL WITH PRIORITY SCHEDULING BY SUPPLEMENTARY VARIABLE METHOD

  • Choi, Doo Il
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.147-154
    • /
    • 2013
  • We analyze queueing model with priority scheduling by supplementary variable method. Customers are classified into two types (type-1 and type-2 ) according to their characteristics. Customers of each type arrive by independent Poisson processes, and all customers regardless of type have same general service time. The service order of each type is determined by the queue length of type-1 buffer. If the queue length of type-1 customer exceeds a threshold L, the service priority is given to the type-1 customer. Otherwise, the service priority is given to type-2 customer. Method of supplementary variable by remaining service time gives us information for queue length of two buffers. That is, we derive the differential difference equations for our queueing system. We obtain joint probability generating function for two queue lengths and the remaining service time. Also, the mean queue length of each buffer is derived.

Heat Transfer Analysis of Composite Materials Using MLS Finite Difference Method (MLS 유한차분법을 이용한 복합재료의 열전달문제 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.2-7
    • /
    • 2008
  • A highly efficient moving least squares finite difference method (MLS FDM) for heat transfer analysis of composite material with interface. In the MLS FDM, governing differential equations are directly discretized at each node. No grid structure is required in the solution procedure. The discretization of governing equations are done by Taylor expansion based on moving least squares method. A wedge function is designed for the modeling of the derivative jump across the interface. Numerical examples showed that the numerical scheme shows very good computational efficiency together with high aocuracy so that the scheme for heat transfer problem with different heat conductivities was successfully verified.

  • PDF