• 제목/요약/키워드: Diethyl nitrosamine

검색결과 3건 처리시간 0.016초

Diethyl Nitrosamine (DEN) 처리 실험동물에 있어 기간에 따른 자화육각수의 임파구 DNA 손상 개선효과 (Effect of the Magnetized Water Supplementation on Lymphocyte DNA Damage in Mice Treated with Diethylnitrosamine)

  • 이혜진;조혜련;전은재;강명희
    • Journal of Nutrition and Health
    • /
    • 제43권6호
    • /
    • pp.570-577
    • /
    • 2010
  • Water gets magnetically charged when it is contacted with a magnet. Although magnetic water products have been promoted since the 1930's, they have received very little recognition due to questionable effectiveness. Diethylnitrosamine (DEN) is a widely occurring nitrosamine that is one of the most important environmental carcinogens primarily inducing tumors of liver. In this study, the effect of magnetized water supplementation on lymphocyte DNA damage in ICR mice treated with DEN was evaluated using the Comet assay. Mice were divided into 3 groups: control, DEN, and DEN + magnetized water group. Fifteen mice were maintained in each group for the entire experimental period of 6, 12 and 18 weeks. Five mice in each group were sacrificed at 6, 12, and 18th weeks, followed by the Comet assay using the blood obtained from heart puncture of the mice. The level of lymphocyte DNA damage reflected by tail moment and other DNA damage indices of tail DNA (%) or tail length of the magnetized water group were significantly decreased after the 6th, 12th and 18th weeks of supplementation compared with the positive control, the DEN group. The relative DNA damage of the magnetized water groups compared to the DEN control group after 6th, 12th, and 18th weeks of supplementation were 42.2%, 40.8%, and 32.9% for DNA in tail, 31.2%, 32.6%, and 21.3% for tail length, and 33.8%, 33.8%, and 24.6% for tail moment, respectively. This is the first report demonstrating that magnetized water may be involved in the lowering effect of the DNA damage in DEN-treated ICR mice. This result suggests that the magnetized water might have minimized the DNA damage by improving the antioxidant status of the mice. However, further studies are needed to characterize the condition of the magnetization and examine the long-term effect of the water product.

Hepatoprotective Effects of Curcumin Against Diethyl Nitrosamine Induced Hepatotoxicity in Albino Rats

  • Kadasa, Naif Mohammed;Abdallah, Haytham;Afifi, Mohamed;Gowayed, Salah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.103-108
    • /
    • 2015
  • Curcumin is widely used as a traditional medicine. This work was aimed to investigate its possible protective effect against chemically induced hepatocellular carcinoma (HCC) in rats. Fifty male albino rats were divided into five groups (n=10, each). The control group received a single dose of normal saline, the diethylnitrosamine (DENA) group received a single intra-peritoneal dose at 200mg/kg body weight, and the 3rd, 4th and 5th groups were given DENA and daily administrated curcunine (CUR) via intra-gastric intubation in doses of 300, 200 and 100 mg/kg b.wt. respectively for 20 weeks. Serum, and liver samples were used for determination of alpha feto-protein (AFP), interleukin-2 (IL-2), interleukine-6 (IL-6), serum liver enzymes (AST, ALT, ALP and GGT) levels as well the activities and gene expression of glutathione peroxidise (GPx), glutathione reductase (GR), catalase (CAT) and super oxide dismutase (SOD). Curcumin significantly lowered the serum levels of AFP, IL-2 and IL-6, ALT, ALT, and malondialdehyde (MDA) as well gene expression of IL-2 and IL-6. In contrast it increased the gene expression and activities of Gpx, GRD, CAT and SOD. The protective effect of CUR against DEN-induced hepatocarcinogenesis in albino rats was proven.

Altered Cell to Cell Communication, Autophagy and Mitochondrial Dysfunction in a Model of Hepatocellular Carcinoma: Potential Protective Effects of Curcumin and Stem Cell Therapy

  • Tork, Ola M;Khaleel, Eman F;Abdelmaqsoud, Omnia M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8271-8279
    • /
    • 2016
  • Background: Hepato-carcinogenesis is multifaceted in its molecular aspects. Among the interplaying agents are altered gap junctions, the proteasome/autophagy system, and mitochondria. The present experimental study was designed to outline the roles of these players and to investigate the tumor suppressive effects of curcumin with or without mesenchymal stem cells (MSCs) in hepatocellular carcinoma (HCC). Materials and Methods: Adult female albino rats were divided into normal controls and animals with HCC induced by diethyl-nitrosamine (DENA) and $CCl_4$. Additional groups treated after HCC induction were: Cur/HCC which received curcumin; MSCs/HCC which received MSCs; and Cur+MSCs/HCC which received both curcumin and MSCs. For all groups there were histopathological examination and assessment of gene expression of connexin43 (Cx43), ubiquitin ligase-E3 (UCP-3), the autophagy marker LC3 and coenzyme-Q10 (Mito.Q10) mRNA by real time, reverse transcription-polymerase chain reaction, along with measurement of LC3II/LC3I ratio for estimation of autophagosome formation in the rat liver tissue. In addition, the serum levels of ALT, AST and alpha fetoprotein (AFP), together with the proinflammatory cytokines $TNF{\alpha}$ and IL-6, were determined in all groups. Results: Histopathological examination of liver tissue from animals which received DENA-$CCl_4$ only revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules. Administration of curcumin, MSCs; each alone or combined into rats after induction of HCC improved the histopathological picture. This was accompanied by significant reduction in ${\alpha}$-fetoprotein together with proinflammatory cytokines and significant decrease of various liver enzymes, in addition to upregulation of Cx43, UCP-3, LC3 and Mito.Q10 mRNA. Conclusions: Improvement of Cx43 expression, nonapoptotic cell death and mitochondrial function can repress tumor growth in HCC. Administration of curcumin and/or MSCs have tumor suppressive effects as they can target these mechanisms. However, further research is still needed to verify their effectiveness.