• Title/Summary/Keyword: Dietary Energetics

Search Result 6, Processing Time 0.02 seconds

Effects of Combining Feed Grade Urea and a Slow-release Urea Product on Performance, Dietary Energetics and Carcass Characteristics of Feedlot Lambs Fed Finishing Diets with Different Starch to Acid Detergent Fiber Ratios

  • Estrada-Angulo, A.;Lopez-Soto, M.A.;Rivera-Mendez, C.R.;Castro, B.I.;Rios, F.G.;Davila-Ramos, H.;Barreras, A.;Urias-Estrada, J.D.;Zinn, R.A.;Plascencia, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1725-1733
    • /
    • 2016
  • Recent findings have shown that microbial nitrogen flow and digestible energy of diets are increased when urea is combined with a slow-release urea (SRU) in diets with a starch to acid detergent fibre ratio (S:F) 4:1. This affect is attributable to enhanced synchrony between ruminal N availability for microbial growth and carbohydrate degradation. To verify the magnitude of this effects on lamb performance, an experiment was conducted to evaluate the effects of combining urea and a SRU in diets containing S:F ratios of 3:1, 4:1, or 5:1 on performance, dietary energetics and carcass characteristics of finishing lambs. For that, 40 Pelibuey${\times}$Katahdin lambs ($36.65{\pm}3kg$) were assigned to one of five weight groupings in 20 pens (5 repetition/treatments). The S:F ratio in the diet was manipulated by partially replacing the corn grain and dried distiller's grain with solubles by forage (wheat straw) and soybean meal to reach S:F ratios of 3:1, 4:1 or 5:1. An additional treatment of 4:1 S:F ratio with 0.8% urea as the sole source of non-protein nitrogen was used as a reference for comparing the effect of urea combination vs. conventional urea at the same S:F ratio. There were no treatment effects on dry matter intake (DMI). Compared the urea combination vs urea at the same S:F ratio, urea combination increased (p<0.01) average daily gain (ADG, 18.3%), gain for feed (G:F, 9.5%), and apparent energy retention per unit DMI (8.2%). Irrespective of the S:F ratio, the urea combination improved the observed-to-expected dietary ratio and apparent retention per unit DMI was maximal (quadratic effect, $p{\leq}0.03$) at an S:F ratio of 4:1, while the conventional urea treatment did not modify the observed-to-expected net energy ratio nor the apparent retention per unit DMI at 4:1 S:F ratio. Urea combination group tended (3.8%, p = 0.08) to have heavier carcasses with no effects on the rest of carcass characteristics. As S:F ratio increased, ADG, G:F, dietary net energy, carcass weight, dressing percentage and longissimus thoracis (LM) area increased linearly ($p{\leq}0.02$). Combining urea and a slow-release urea product results in positive effects on growth performance and dietary energetics, but the best responses are apparently observed when there is a certain proportion (S:F ratio = 4:1) of starch to acid detergent fibre in the diet.

Influence of Protein and Energy Level in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetics and Carcass Characteristics

  • Rios-Rincon, F.G.;Estrada-Angulo, A.;Plascencia, A.;Lopez-Soto, M.A.;Castro-Perez, B.I.;Portillo-Loera, J.J.;Robles-Estrada, J.C.;Calderon-Cortes, J.F.;Davila-Ramos, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Forty-eight Pelibuey${\times}$Katahdin male intact lambs ($23.87{\pm}2.84$ kg) were used in an 84-d feeding trial, with six pens per treatment in a $2{\times}2$ factorial design arrangement. The aim of the study was to evaluate the interaction of two dietary energy levels (3.05 and 2.83 Mcal/kg ME) and two dietary protein levels (17.5% and 14.5%) on growth performance, dietary energetics and carcass traits. The dietary treatments used were: i) High protein-high energy (HP-HE); ii) High protein-low energy (HP-LE); iii) Low protein-high energy (LP-HE), and iv) Low protein-low energy (LP-LE). With a high-energy level, dry matter intake (DMI) values were 6.1% lower in the low-protein diets, while with low-energy, the DMI values did not differ between the dietary protein levels. Energy levels did not influence the final weight and average daily gain (ADG), but resulted in lower DMI values and higher gain efficiencies. No effects of protein level were detected on growth performance. The observed dietary net energy (NE) ratio and observed DMI were closer than expected in all treatments and were not affected by the different treatments. There was an interaction (p<0.03) between energy and protein level for kidney-pelvic and heart fat (KPH), KPH was higher in lambs fed high energy and high protein diet but not in high energy and low protein diet. The KPH was increased (20.2%, p = 0.01) in high-energy diets, while fat thickness was increased (21.7%, p = 0.02) in high-protein diets. Therefore, it is concluded that dietary energy levels play a more important role in feed efficiency than protein levels in finishing lambs with a high-energy diet (>2.80 Mcal/kg ME). Providing a level of protein above 14.5% does not improves growth-performance, dietary energetics or carcass dressing percentage.

Influence of Ionophore Supplementation on Growth Performance, Dietary Energetics and Carcass Characteristics in Finishing Cattle during Period of Heat Stress

  • Barreras, A.;Castro-Perez, B.I.;Lopez-Soto, M.A.;Torrentera, N.G.;Montano, M.F.;Estrada-Angulo, A.;Rios, F.G.;Davila-Ramos, H.;Plascencia, A.;Zinn, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1553-1561
    • /
    • 2013
  • Forty-eight crossbred heifers ($378.1{\pm}18$ kg) were used in a 56-d feeding trial (four pens per treatment in a randomised complete block design) to evaluate the influence of ionophore supplementation on growth performance, dietary energetics and carcass characteristics in finishing cattle during a period of heat stress. Heifers were fed a diet based on steam-flaked corn (2.22 Mcal $NE_m/kg$) with and without an ionophore. Treatments were: i) control, no ionophore; ii) 30 mg/kg monensin sodium (RUM30); iii) 20 mg/kg lasalocid sodium (BOV20), and iv) 30 mg/kg lasalocid sodium (BOV30). Both dry matter intake (DMI) and climatic variables were measured daily and the temperature humidity index (THI) was estimated. The maximum THI during the study averaged 93, while the minimum was 70 (THI average = $79.2{\pm}2.3$). Compared to controls, monensin supplementation did not influence average daily gain, the estimated NE value of the diet, or observed-to-expected DMI, but tended (p = 0.07) to increase (4.8%) gain to feed. Compared to controls, the group fed BOV30 increased ($p{\leq}0.03$) daily gain (11.8%), gain to feed (8.3%), net energy of the diet (5%), and observed-to-expected DMI (5.2%). Daily weight gain was greater (7.6%, p = 0.05) for heifers fed BOV30 than for heifers fed MON30. Otherwise, differences between the two treatments in DMI, gain to feed, and dietary NE were not statistically significant (p>0.11). Plotting weekly intakes versus THI, observed intake of controls was greater (p<0.05) at THI values ${\leq}77$ than ionophore groups. When THI values were greater than 79, DMI of control and MON30 were not different (p = 0.42), although less than that of groups fed lasalocid (p = 0.04). Variation in energy intake was lower (p>0.05) in the ionophores group (CV = 1.7%) than in the control group (CV = 4.5%). Inclusion of ionophores in the diet resulted in relatively minor changes in carcass characteristics. It is concluded that ionophore supplementation did not exacerbate the decline of DM intake in heat-stressed cattle fed a high-energy finishing diet; on the contrary, it stabilised feed intake and favoured feed efficiency. Ionophore supplementation reduced estimated maintenance coefficients around 10% in finishing cattle during a period of heat stress. This effect was greatest for heifers supplemented with 30 mg lasalocid/kg of diet.

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

Influence of Quaternary Benzophenantridine and Protopine Alkaloids on Growth Performance, Dietary Energy, Carcass Traits, Visceral Mass, and Rumen Health in Finishing Ewes under Conditions of Severe Temperature-humidity Index

  • Estrada-Angulo, A.;Aguilar-Hernandez, A.;Osuna-Perez, M.;Nunez-Benitez, V.H.;Castro-Perez, B.I.;Silva-Hidalgo, G.;Contreras-Perez, G.;Barreras, A.;Plascencia, A.;Zinn, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.652-658
    • /
    • 2016
  • Twenty $Pelibuey{\times}Katahdin$ ewes ($35{\pm}2.3kg$) were used to determine the effects of the consumption of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on growth performance, dietary energetics, visceral mass, and ruminal epithelial health in heat-stressed ewes fed with a high-energy corn-based diet. The basal diet (13.9% crude protein and 2.09 Mcal of net energy [NE] of maintenance/kg of dry matter) contained 49.7% starch and 15.3% neutral detergent fiber. Source of QBA+PA was Sangrovit RS (SANG) which contains 3 g of quaternary benzophenathridine and protopine alkaloids per kg of product. Treatments consisted of a daily consumption of 0 or 0.5 g SANG/ewe. Ewes were grouped by weight and assigned to 10 pens (5 pens/treatment), with two ewes per pen. The experimental period lasted 70 days. The mean temperature humidity index during the course of this experiment was $81.7{\pm}1.0$ (severe heat stress). There were no treatment effects on water intake. Dry matter intake was not affected (p = 0.70) by treatments, but the group fed SANG had a numerically (11.2%) higher gain in comparison to the control group, SANG improved gain efficiency (8.3%, p = 0.04), dietary NE (5.2%, p<0.01) and the observed-to-expected NE (5.9%, p<0.01). Supplemental SANG did not affect ($p{\geq}0.12$) carcass characteristics, chemical composition of shoulder, and organ weights (g/kg empty body weight) of stomach complex, intestines, and heart/lung. Supplemental SANG decreased liver weight (10.3%, p = 0.02) and increased visceral fat (16.9%, p = 0.02). Rumen epithelium of ewes fed SANG had lower scores for cellular dropsical degeneration (2.08 vs 2.34, p = 0.02), parakeratosis (1.30 vs 1.82, p = 0.03) and neutrophil infiltration (2.08 vs 2.86, p = 0.05) than controls. It is concluded that SANG supplementation helped ameliorate the negative effects of severe heat on growth performance of feedlot ewes fed high-energy corn-based diets. Improvement in energetic efficiency may have been mediated, in part, by anti-inflammatory effects of supplemental SANG and corresponding enhancement of nutrient uptake.

Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs

  • Rivera-Villegas, A.;Estrada-Angulo, A.;Castro-Perez, B.I.;Urias-Estrada, J.D.;Rios-Rincon, F.G.;Rodriguez-Cordero, D.;Barreras, A.;Plascencia, A.;Gonzalez-Vizcarra, V.M.;Sosa-Gordillo, J.F.;Zinn, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.209-216
    • /
    • 2019
  • Objective: We compare the effects of three different approved sources of supplemental zilpaterol on growth-performance responses and carcass characteristics of finishing lambs. Methods: Twenty four Pelibuey${\times}$Katahdin lambs ($46.75{\pm}2.43kg$) were used in a 33-day feeding trial. Lambs were fed a dry rolled corn-based finishing diet. Treatments consisted of the non-supplemental basal diet (Control) versus the basal diet supplemented with 125 mg zilpaterol/kg of diet (as fed basis) from three commercial sources marketed in Mexico: Zilmax (ZIL), Grofactor, and Zipamix. Results: Compared to controls, zilpaterol (ZH) supplementation did not affect dry matter intake (DMI), but increased carcass adjusted daily weight gain (ADG, 36.7%), gain efficiency (34.2%), and dietary net energy (26.0%), and decreased (23.4%) the ratio of observed:expected DMI. Compared to controls, supplemental ZH increased hot carcass weight (6.4%), dressing percentage (3.2%), m. longissimus thoracis (LM) area (15.6%), and shoulder muscle:fat ratio (28.7%), but decreased kidney-pelvic-heart fat, and fat thickness. Supplemental ZH increased 10.9% and 14.3% whole cut weight of loin and leg, respectively, and the proportion (as percentage of cold carcass weight) of leg (4.3%). These increases were reflected in greater forequarter and hindquarter weights. Lambs fed ZH increased (4.6%) empty body weight (EBW) and reduced (14.7%) liver/spleen weight (as g/kg EBW). Likewise, ZH supplementation tended (p = 0.08) to lower (8.9%) visceral fat. Growth performance, energetic efficiency, hot carcass weight, dressing percentage, LM area and whole cuts were not different across supplemental ZH sources. However, compared with non-supplemented controls, only ZIL appreciably decreased carcass fat distribution, including fat thickness, percentage kidney pelvic and heart fat, shoulder fat, and visceral fat. Conclusion: Supplemental ZH increases ADG, gain efficiency, carcass dressing percentage, and LM area. The magnitude of these responses was similar among ZH sources. Nevertheless, compared with non-supplemented controls, only ZIL appreciably decreases carcass fat. The basis for this is uncertain, but indicative that some practical differences in zilpaterol bio-equivalency may exist across commercial sources tested.