• Title/Summary/Keyword: Diesel spray combustion

Search Result 235, Processing Time 0.02 seconds

A study on the spray combustion characteristics of D.I. diesel engine using visualization engine system (가시화 엔진을 이용한 직분식 디젤 엔진의 분무 연소 특성에 관한 연구)

  • Chung, J.W.;Lee, K.H.;Choi, S.W.;Kim, B.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 1999
  • Recently, many researchers have been studied a D.I. diesel engine because of the exhaust gas restriction and fuel consumption performance. It is well known that the fuel injection characteristics are the key factors on the diesel combustion and exhaust emission. In this study, the fuel injection characteristics of 5-hole injector and the combustion characteristics are investigated with the amount of fuel by means of the visualization method and visualization D.I. diesel engine system. As the results of the experiments, the spray pattern of the fuel injection and the diffusion flame of a D.I. diesel engine are clarified. In addition, combustion phenomena with operation conditions such as engine speed and engine load are made clear.

  • PDF

Effects on Diesel Spray for Variation of Ambient Pressure and Impingement Land Position (주위 압력 및 충돌면 위치 변화가 디젤분무에 미치는 영향)

  • 박대순;김문헌;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.95-105
    • /
    • 1997
  • A diesel engine has become smaller and higher, thus sprays injected in high speed may be impinged on a small combustion chamber wall if there is not enough strong swirl. Those combustion chambers should have proper measures to avoid the spray impinged and deposited on a wall. One of the measures is a chamber prepared impingement parts raised on a chamber wall surface. In this system a spray is injected into the raised pip, broken into a number of smaller drops and spreaded out away from the wall surface. Therefore the fuel droplets distributes over inside of the combustion chamber. In this study, the positions, sizes and angles of the raised land are discussed to help the chamber design using spray wall impaction. The characteristics of the spray impinged on various lands are investigated and compared with each other. Then chamber shapes are discussed with the spray characteristics and the proper positions and size are proposed in some chamber volumes.

  • PDF

A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector (전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구)

  • 정재우;김성중;이기형;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

The Effect of Air and Spray Turbulence on the Progress in a D.I. Diesel Engine(II)-Combustion Chamber Design for the Use of Emulsified Diesel Oil with Water Particles- (직접분사식 디젤기관의 연소실 형상과 화염의 발달 (2)-유화액연료용 연소실의 형상-)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3054-3062
    • /
    • 1995
  • Recently, the improvement of fuel economy and the reduction of exhaust smoke and NOx have been successfully achieved by supplying diesel engines with emulsified diesel oil with water particles. In the present paper, the difference between the combustion of injected emulsified fuel and that of diesel oil spray is clarified by means of taking high-speed and color photographs of the flames in the engine cylinder. As the results, the two kinds of fuels show different combustion behavior each other in the growth of initial flame and in the termination of combustion process in the cylinder. Then, suitable combustion chamber design for the use of emulsified fuel is discussed on the basis of experimental data for various distribution of spray in different kinds of piston cavities. Some methods of clearing troubles caused by emulsified fuel injection are also discussed on the basis of performance tests with a remodeling test engine.

A Study on Diesel Spray Combustion Modeling by Eulerian and Lagrangian Conditional Moment Closure Models (Eulerian 및 Lagrangian CMC 모델을 사용한 디젤분무연소 모델링에 관한 연구)

  • Kim, Woo Tae;Cho, Hyun Su;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.195-198
    • /
    • 2012
  • Numerical simulation is performed to evaluate the conditional moment closure (CMC) models for spray development, ignition, and turbulent combustion for the Engine Combustion Network (ECN) test cases. The CMC model is implemented in the open source code, OpenFOAM, to provide conditional flame structures through the solution of Eulerian as well as Lagrangian conditional transport equations. In spite of more accurate treatment of the convective term, Eulerian CMC provides similar ignition delays and lift-off lengths with Lagrangian CMC.

  • PDF

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

A Study on Spray Behaviors with Variation of Nozzle Diameter in the Diesel Combustion Chamber (분사 노즐 분공경에 따른 디젤 엔진 연소실내 분무 거동에 관한 연구)

  • 차경세;정우인;박찬국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.18-27
    • /
    • 2000
  • The spray models incorporated into the GTT code were tested for free spray, spray in swirling flows and the sprays impinging on a flat wall. And the validity of the models has been confirmed by comparing the calculated results with the experimental data. Using this code, the spray behavior in the diesel combustion chamber have been numerically analyzed for variation of nozzle diameter. Also, the effects of nozzle diameter in diesel combustion was investigated experimentally by measuring the performance in a D.I engine. This study provides the information for the spray characteristics and emissions with variation of nozzle diameter. As a result, it has shown that decreasing nozzle diameter resulted in improving smoke and specific fuel consumption in a middle speed range.

  • PDF

Behavior of a Diesel Spray Impinged on a Wall (벽면에 충돌하는 디젤분무의 거동)

  • Cho, I.Y.;Oh, J.H.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • In the case of analyzing the combustion phenomena in a small high speed DI diesel engine, one demands the experimental results of the impinging spray on the wall as a basic characteristics. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air at room temperature was charged. The single spray was impinged on a flat wall. The growth of the spray was photographed with transmitted light or scattered light. The effect of the spray axis angle to the wall on the impinging spray was revealed. Finally, the experimental results was presented, that is, the radius and height of the impinging spray was influenced by above mentioned variable.

  • PDF