• Title/Summary/Keyword: Diesel spray combustion

Search Result 235, Processing Time 0.031 seconds

An Experimental Study on Combustion Characteristics when applied Bio-Diesel Fuel at Low Temperature (저온 바이오디젤 연료의 연소특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Lee, Jung-Sub;Park, Young-Joon;Kim, Duk-Sang;Lee, Young-Chul;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.206-211
    • /
    • 2008
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying bio-diesel fuel to a common-rail system in which precise control is available for utilizing environmentally friendly properties of bio-diesel fuel. The experiment was conducted at fuel temperatures $20^{\circ}C$ and $-20^{\circ}C$ to investigate combustion characteristics of bio-diesel fuel provoking problems in fluidity specially in a low temperature. For the visualization, the experiment was carried out under various conditions of ambient pressure, injection pressure and fuel temperature. The test was made by three different types of diesel fuels, conventional diesel, BD20 and BD100. In summary, this research aims to investigate combustion characteristics in the application of bio-diesel fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide fundamentals of spray and combustion of bio-diesel fuels at a low temperature and contribute to the development of bio-diesel engines in future.

  • PDF

Experimental Study on Spray Characteristics of Piezo Injector Group-hole Nozzle for Common Rail Diesel Engine (커먼레일 디젤기관용 피에조 인젝터 그룹홀 노즐의 분무 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.14-19
    • /
    • 2008
  • In order to meet stringent future emission regulations, especially to reduce Particulate Matter (PM) and NOX, stoichiometric diesel combustion technology with a piezo group-hole nozzle injector is being researched for reduction harmful emissions. A new nozzle layout, namely a group-hole nozzle, which has one group of small orifices with a wide spray included angle was investigated to improve the efficiency of stoichiometric diesel combustion. From this point of view, the group-hole nozzle suggested by Dense Co. is an attractive candidate method applicable to stoichiometric diesel combustion. The group-hole nozzle concept is to reduce the injector nozzle hole diameters without sacrificing spray penetration by closely locating two holes. Experimental studies have proven that the spray from group-hole nozzles have similar spray penetration to that of a single hole with equivalent overall nozzle hole area, but the spray drop sizes (SMD) are reduced, aiding vaporization and mixing.

  • PDF

Spray and Flame Characteristics of Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Diesel Engine Using In-cylinder Visualization (가시화 엔진을 이용한 직접 분사식 압축착화 디젤엔진에서 폐식용유 바이오디젤과 디젤의 분무 및 화염 특성 비교)

  • Hwang, Joonsik;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • Spray and combustion process with waste cooking oil (WCO) biodiesel and commercial diesel were analyzed in an optically-accessible single-cylinder compression ignition diesel engine equipped with a high pressure common-rail injection system. Direct imaging method was applied to investigate spray and combustion characteristics. From the mie-scattering results, it was verified that WCO biodiesel had a longer injection delay compared to diesel. Spray tip penetration length of WCO biodiesel was longer and spray angle was narrower than those of diesel due to poor atomization characteristics. In terms of combustion, WCO biodiesel showed later start of combustion, while flame was vanished more rapidly. Analysis of flame luminosity showed that WCO biodiesel combustion had lower intensity and lasted for shorter duration.

A Experimental/Numerical Study of Behaviors of Spray Impinging on the Diesel Combustion Chamber Wall (디젤 연소실 벽면에 충돌하는 분무거동에 관한 실험적/수치적 연구)

  • 박정규;원석규;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.86-95
    • /
    • 2000
  • A modified spray impingement model has been developed, which is assessed against experiments for the impinging sprays on the small combustion chamber at various gas pressures. To investigate spray behaviors in the diesel combustion chamber, a transparent constant-volume chamber is made which is similar to the combustion chamber of the real diesel engine. The chamber is pressurized by N2 gas from 0 bar to 20 bar to find the effects of ambient pressures. The behaviors of spray injected into this chamber and dispersed after impingement on the cylinder wall is measured two-dimensionally using laser sheet Mie scattering method. The physical submodels have been properly modified to improve the prediction capability of original KIVA code to describe the spray behaviors after impingement on the curved cylinder wall. In terms of spray dynamics and evolution. numerical results give qualitatively good agreements with experimental data.

  • PDF

An Investigation on the Spray Characteristics of Diesel-DME Blended Fuel with Variation of Ambient Pressure in the Constant Volume Combustion Chamber (정적연소기에서 분위기 압력에 따른 Diesel-DME 혼합연료의 분무 특성에 관한 연구)

  • Yang, Jiwoong;Lee, Sejun;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.178-184
    • /
    • 2012
  • The aim of this study was to compare the spray characteristics of a typical fuel (100% diesel, DME) and diesel-DME blended fuel in a constant volume combustion chamber (CVCC). The typical fuel (100% diesel, DME) and diesel-DME blended fuel spray characteristics were investigated at various ambient pressures (pressurized nitrogen) and fuel injection pressures using a common rail fuel injection system when the fuel mixture ratio was varied. The fuel injection quantity and spray characteristics were measured including spray shape, penetration length, and spray angle. Common types of injectors were used.

Measurement technique for particle and soot of diesel injection by using a visualization method (가시화법을 이용한 디젤 인젝터의 액적과 soot의 측정 기술)

  • Chung, J.W.;Park, H.J.;Lee, K.H.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 2001
  • Recently, many researches have been performed to improve the combustion and emission in a D.I.Diesel engine. Especially reduction of the soot formation in the combustion chamber is the essential to acquire the improvement of the emission performance. This emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Therefore, the optical measurement technique such as LII and LIS were established in order to visualize the distribution of the soot and analyze the particle including spray in the combustion chamber. In this study, we developed the algorithm for calculating relative diameter and density of particle and applied this method to measure stimultaneously the distribution of soot and spray in a D.I. diesel engine. From this experiment we found that the soot is existed in the rich region of spray and generated caused by incapable air fuel mixture.

  • PDF

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

The Spray and Combustion Characteristics by the Ratio of Cetane Number Enhancing Additives in Diesel (세탄가 향상 혼합 연료에 따른 디젤 연료의 분무 및 연소특성에 관한 연구)

  • Kim, J.H.;Lee, S.W.;Lee, H.S.;Choi, J.H.;Lee, Y.C.;Cho, Y.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying different composition rates of octane number in diesel fuel to a common-rail system. For the visualization, the experiment was carried out under different injection pressures and different cetane number. The test was done by three different types of diesel fuels, the different composition rates of cetane number in diesel fuel and HBD. In summary, this research aims to investigate the combustion characteristics in the application of fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide with fundamentals of the development of diesel engines in future.

  • PDF

Spray and Combustion Characteristics of Diesel and JP-8 in a Heavy-Duty Diesel Engine Equipped with Common-Rail Fuel Injection System (커먼레일을 장착한 대형 디젤엔진에서 디젤과 JP-8의 분무 및 연소특성 평가)

  • Jeon, Jin-Woog;Lee, Jin-Woo;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3019-3025
    • /
    • 2008
  • An experimental study was performed to assess the effect of diesel and JP-8 aviation fuel on the spray characteristics, performance and emissions in a single cylinder optical diesel engine. Both fuels were injected via an 8-hole solenoid-driven injector in a common-rail injection system. For better understanding of spray development, the macroscopic images were captured with high speed camera, offered evidences for the results of performance and emissions. From macroscopic spray images, the spray tip penetration of JP-8 shorter than that of diesel while spray angle of JP-8 was wider than that of diesel. It indicates that the vaporization of JP-8 is superior to that of diesel. The lower cetane number of JP-8 resulted in increased portion of premixed combustion. The IMEP with JP-8 is lower than that of diesel-fueled engine. Especially, using JP-8 has a potential for reducing soot.

  • PDF

A Study on Optimization of Diesel Combustion in condition of Premixed Natural gas (천연가스 예혼합 분위기 내 디젤 연소의 최적화에 관한 연구)

  • Suh, Hyunuk;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • This numerical study was carried out to optimize dual fuel combustion on natural gas-diesel in static chamber. Spray experiments conducted under conditions of premixed methan 0%, 5% and 10%. In the results, penetration decreases when premixed methane is increasing. Constants of numerical models were acquired from results of spray experiments to enhance accuracy of numerical study. And dual fuel engine simulation was implemented by using AVL-FIRE with acquired constants.

  • PDF