• 제목/요약/키워드: Diesel spray combustion

검색결과 235건 처리시간 0.029초

예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine)

  • 윤승현;이두진;이창식
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased

HSDI 디젤엔진의 연소계 최적화 해석기술 개발 (Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine)

  • 이제형;이준규
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -연소실 형상비(Bowl직경/Bowl깊이)의 효과- (Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Aspect Ratio(Bowl Diameter/Bowl Depth)-)

  • 권준박;김형섭;권순익;오재건
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.54-62
    • /
    • 1996
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.1.diesel engine. The main factor was the aspect ratio (Bowl Diameter/Bowl Depth) of bowl of combustion chamber, and the measured data include the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber. Experimental results indicate that the effect of dc/H and nozzle protrusion are relatively small and there exists an optimum dc/H according to the combustion conditions. It is also found that the smoke emission is quite sensitive the overall combustion time where the 90 percentage of the combustion heat is released. The smoke mission increases by shortening the 90% combustion time while it decreases by delaying the 90% combustion time.

  • PDF

정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구 (A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber)

  • 전충환;정정훈;김현규;송주헌;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.645-652
    • /
    • 2010
  • 본 연구의 목적은 다양한 분위기 압력 하에서 커먼레일 디젤인젝터를 통해 분사되는 비증발 디젤 분무특성에 관한 연구이다. 디젤분무의 거시적 특성으로 분무관통거리와 분무각을 음영사진과 이미지프로세싱으로 연구하였다. 수치해석은 상용 CFD프로그램인 AVL-FIRE를 사용하였다. 분열모델은 WAVE모델을 사용하였으며 표준 $k-{\varepsilon}$난류모델을 적용하였다. 분무각과 Zeuch법을 적용한 연료 분사율을 수치해석의 입력값으로 사용하였다. 분무관통거리를 실험값과 비교하여 좋은 결과를 얻었고 수치해석을 통하여 노즐팁 하류방향으로 분무의 각 구간별 액적입경분포를 알아보았다.

The Experimental Study on the Low-temperature Combustion Characteristics of DME Fuel in a Compression Ignition Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.190-196
    • /
    • 2017
  • The aim of this work is to investigate the combustion and exhaust emission characteristics of low-temperature combustion (LTC) at various EGR test conditions using a single cylinder common-rail diesel engine. In high EGR rate combustion mode with DME fuel, 30% (${\Phi}=0.61$) and 50% (${\Phi}=0.86$) of EGR were respectively examined, and then the combustion, exhaust emissions, nano-particle characteristics of each cases were measured. From these results, it revealed that The ignition delay and combustion duration are prolonged as the increase of EGR rate. In addition, at an advanced injection timing (BTDC $30^{\circ}$), ignition delays were fairly increased because the dilution effect of EGR and also low charge in-cylinder temperature created a lean mixture, thus decreased the peak release rate.

고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구 (Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰 (Numerical Analysis of the Formation of New Impinging Spray in the Combustion System)

  • 류성목;차건종;김덕줄;박권하
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향 (The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber)

  • 임덕경;박권하
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

고속 직분식 디젤 엔진에서의 점화지연시기 예측 (Prediction of Ignition Delay for HSDI Diesel Engine)

  • 임재만;김용래;온형석;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1704-1709
    • /
    • 2004
  • New reduced chemical kinetic mechanism for prediction of autoignition process of HSDI diesel engine was investigated. For precise prediction of the ignition characteristics of diesel fuel, mechanism coefficients were fitted by the experimental results of ignition delay of diesel spray in a constant volume vessel. Ignition delay of diesel engine on various operation condition was calculated based on the new reduced chemical mechanism. The calculation results agreed well with experimental data.

  • PDF

바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향 (Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel)

  • 유경현
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.