• Title/Summary/Keyword: Diesel spray combustion

Search Result 235, Processing Time 0.02 seconds

Spray and Combustion Characteristics of n-dodecane in a Constant Volume Combustion Chamber for ECN Research (ECN 연구용 고온 고압 정적 연소실에서의 n-dodecane 분무 및 연소 특성)

  • Kim, Jaeheun;Park, Hyunwook;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.188-196
    • /
    • 2014
  • The spray and combustion characteristics of n-dodecane fuel were investigated in a CVCC (constant volume combustion chamber). The selection of ambient conditions for the spray followed ECN (engine combustion network) guidelines, which simulates the ambient condition of diesel engines at start of fuel injection. ECN is a collaboration network whose main objective is to establish an internet library of well-documented experiments that are appropriate for model validation and the advancement of scientific understanding of combustion at conditions specific to engines. Therefore repeatability of the experiments with high accuracy was important. The ambient temperature was varied from 750 to 930 K while the density was fixed at around $23kg/m^3$. The injection pressure of the fuel was varied from 500 to 1500 bar. The spray was injected in both non-reacting ($O_2$ concentration of 0%) and reacting conditions ($O_2$ concentration of 15%) to examine the spray and the combustion characteristics. Direct imaging with Mie Scattering was used to obtain the liquid penetration length. Shadowgraph was implemented to observe vapor length and lift-off length at non-reacting and reacting conditions, respectively. Pressure data was analyzed to determine the ignition delay with respect to the spray and ambient conditions.

Numerical Studies on Combustion Characteristics of Diesel Engines using DME Fuel (DME연료 디젤 엔진에서의 연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and spray combustion processes in DI diesel engine using DME and n-heptane. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model has been utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Based on numerical results, the detailed discussion has been made for the distinctly different combustion characteristics of DME diesel engine in term of vaporization, ignition delay, pollutant formation, and heat release rate.

Numerical studies for combustion processes and emissions in the DI diesel engines using EGR (EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석)

  • Kwon, Y.D.;Lee, J. C.;Kim, Y. M.;Kim, S. W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.

A Study on the Mixture Formation Process of Evaporating Diesel Spray by Offset Incidence Laser Beam

  • Yeom, Jeong-Kuk;Kang, Byung-Mu;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1702-1709
    • /
    • 2002
  • This paper analyzes heterogeneous distribution of branch-like structure at the downstream region of the spray. The liquid and vapor phase of the spray are obtained using a 35㎜ still camera and CCD camera in order to investigate spray structure of evaporating diesel spray. There have been many studies conducted on diesel spray structure but have yet only focused on the analyses of 2-D structure. There are a few information which is concerned with 3-D structure analysis of evaporating spray. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray and the combustion characteristics of the diesel engines. In this study, the laser beam of 2-D plane was used in order to investigate 3-D structure of evaporating spray The incident laser beam was offset on the central axis of the spray. From the analysis of images taken by offset laser beam, we will examine the formation mechanism of heterogeneous distribution of the diesel spray by vortex flow at the downstream of the spray. The images of liquid and vapor phase of free spray are simultaneously taken through an exciplex fluorescence method. Through this, the branch-like structure consisting of heterogeneous distribution of the droplets forms high concentrated vapor phase at the periphery of droplets and at the spray tip.

Effects of Pilot Injection on Low Temperature Diesel Combustion (파일럿 분사가 저온 디젤 연소에 미치는 영향)

  • Han, Sang-Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.

The effect of air and spray turbulence in a D.I. diesel engine on the flame progress (直接噴射式 디이젤機關의 燃燒室形狀과 火焰의 發達)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-52
    • /
    • 1987
  • For the favorable performance of a D.I. diesel engine, it is important to improve the mixture formation process and the ensuing early stage of combustion process. In the present paper, high speed photography was employed to investigate the effectiveness of a cavity digged in a piston crown for some more useful utilization of air. The cavity would function to improve mixing of fuel and air by the increase of turbulence of air and by the impingement of fuel spray on the cavity wall. The results obtained are summarized as follows: (1) From an aspect of thermal efficiency, it is effective to inject the spray tangentially to the cavity wall to enlarge the area of spray evaporation. (2) some deductions obtained from previous investigations using a hot air stream duct are supported by the present results. For example, it is effective for the quick development of flames throughout the combustion chamber to mix the evaporated fuel of main spray with the intermediates brought about by the early stage of combustion of the preceded auxiliary fuel spray.

Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines

  • Kim, Yong-Mo;Lee, Joon-Kyu;Ahn, Jae-Hyun;Kim, Seong-Ku
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.1009-1018
    • /
    • 2002
  • The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOx formation including thermal NO path, prompt and nitrous 70x formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine (편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석)

  • 김홍석;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.