• 제목/요약/키워드: Diesel nozzle

검색결과 203건 처리시간 0.018초

직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구 (Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

연료분사계 변수의 변화에 따른 커먼레일 디젤엔진의 분무특성에 관한 수치적 분석 (A Numerical Analysis on the Spray Characteristics at Different Injection System Parameters in a Common-rail Diesel Engine)

  • 이석영;전충환
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.8-16
    • /
    • 2010
  • This paper present the diesel spray characteristics at different injection system parameters in a HSDI diesel engine. The spray characteristics was calculated by the coupled simulation of fuel injection system model and three-dimensional KIVA-3V code with TAB spray model. The relevant injection parameters are accumulator volume, control chamber initial volume, control orifice diameter, needle valve diameter and nozzle chamber initial volume, etc. Parametric investigation with respect to twelve relevant injection parameters showed that there was a significant advantage in varying control chamber initial volume, control chamber orifice diameter, and nozzle chamber orifice diameter with respect to effect the SMD and fuel injection speed. Consequently, in order to design the fuel injection system for spray characteristics, it seems reasonable to suppose to be optimized the fuel injection system.

전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구 (A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System)

  • 장세호;안수길
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

연료노즐 내부유동 현상의 수치해석 (Calculation of the internal flow in a fuel nozzle)

  • 구자예;박장혁;오두석;정홍철
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구 (The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine)

  • 윤욱현;김병석;김동훈;김기두;하지수
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계 (Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger)

  • 류승협;갈상학;하지수;김승국;김홍원
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.30-38
    • /
    • 2006
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has been done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the meanline prediction method, geometric design and performance curves for compressor were established and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and its characteristics was analyzed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

연료 활성화를 위한 디젤 미립화 장치의 수치해석 연구 (Numerical Study of Diesel Atomization Device for Fuel Activation)

  • 최상인;;서호석;김상범;조영민
    • 한국대기환경학회지
    • /
    • 제33권4호
    • /
    • pp.306-318
    • /
    • 2017
  • Heavy diesel vehicles are one of major sources of urban fine dust in Korea and other developing countries. In this study, an auxiliary device assisting fuel atomization, which is called FAD (Fuel Activation Device), was closely reviewed through numerical simulation. As calculated, the diesel flow velocity passing across FAD increased up to 1.68 times, and it enhanced the cavitation effect which could improve the injected fuel atomization. Super cavitation phenomenon, which is the most important effect on nozzle injection, has occurred until the cavitation number (${\sigma}$) decreased from 1.15 to 1.09, and atomized droplets via a nozzle of which opening was $500{\mu}m$ distributed less than $200{\mu}m$ in sauter mean diameter (SMD).

디젤 충돌 분무의 발달 과정 및 내부 유동 특성 (Internal Structure and Velocity Field of the Impinging Diesel Spray on the Wall)

  • 전문수;서현규;박성욱;이창식
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2005
  • The purpose of this study is to investigate the internal structure of the impinged diesel spray at various experimental conditions. To examine the effect of various factors on the development of a diesel spray impinging on the wall, experiments were conducted at the various Injection pressures, wall distances from the nozzle tip and angles of wall inclination. The PIV system consists of a double pulsed Nd:YAG laser was utilized to analyze the internal flow structure of impinged diesel sprays. The velocity fields from the PIV system were compared with the results measured by the phase Doppler particle analyzer(PDPA)system. The results show that internal flow pattern of the impinged spray was similar with the results from the PDPA system. The radial velocity of the impinged spray was increased with the increase in the injection pressure and near the nozzle-wall distance. The generation of vortex was also promoted with the Increase in angles of wall inclination.

  • PDF

분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향 (The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion)

  • 국상훈;공장식;박세익;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입 (Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System)

  • 공장식;최욱;배충식;강진석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.