• Title/Summary/Keyword: Diesel exhaust

Search Result 1,070, Processing Time 0.03 seconds

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Sources of Carbonaceous Materials in the Airborne Particulate Matter of Dhaka

  • Begum, Bilkis A.;Hossain, Anwar;Saroar, Golam;Biswas, Swapan K.;Nasiruddin, Md.;Nahar, Nurun;Chowdury, Zohir;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.237-246
    • /
    • 2011
  • To explore the sources of carbonaceous material in the airborne particulate matter (PM), comprehensive PM sampling was performed (3 to 14 January 2010) at a traffic hot spot site (HS), Farm Gate, Dhaka using several samplers: AirMetrics MiniVol (for $PM_{10}$ and $PM_{2.5}$) and MOUDI (for size fractionated submicron PM). Long-term PM data (April 2000 to March 2006 and April 2000 to March 2010 in two size fractions ($PM_{2.2}$ and $PM_{2.2-10}$) obtained from two air quality-monitoring stations, one at Farm Gate (HS) and another at a semi-residential (SR) area (Atomic Energy Centre, Dhaka Campus, (AECD)), respectively were also analyzed. The long-term PM trend shows that fine particulate matter concentrations have decreased over time as a result of government policy interventions even with increasing vehicles on the road. The ratio of $PM_{2.5}/PM_{10}$ showed that the average $PM_{2.5}$ mass was about 78% of the $PM_{10}$ mass. It was also found that about 63% of $PM_{2.5}$ mass is $PM_1$. The total contribution of BC to $PM_{2.5}$ is about 16% and showed a decreasing trend over the years. It was observed that $PM_1$ fractions contained the major amount of carbonaceous materials, which mainly originated from high temperature combustion process in the $PM_{2.5}$. From the IMPROVE TOR protocol carbon fraction analysis, it was observed that emissions from gasoline vehicles contributed to $PM_1$ given the high abundance of EC1 and OC2 and the contribution of diesel to $PM_1$ is minimal as indicated by the low abundance of OC1 and EC2. Source apportionment results also show that vehicular exhaust is the largest contributors to PM in Dhaka. There is also transported $PM_{2.2}$from regional sources. With the increasing economic activities and recent GDP growth, the number of vehicles and brick kilns has significantly increased in and around Dhaka. Further action will be required to further reduce PM-related air pollution in Dhaka.

An Experimental Study on the NH3-SCR of NOx over a Vanadium-based Catlayst (바나듐 계열 촉매를 통한 NOx의 NH3-SCR에 관한 실험적 연구)

  • Jeong, Hee-Chan;Sim, Sung-Min;Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The $NH_3$-SCR characteristics of $NO_X$ over a V-based catalyst are experimentally examined over a wide range of operating conditions, i.e., $170-590^{\circ}C$ and $30,000-50,000h^{-1}$, with a simulated diesel exhaust containing $NH_3$, NO, $NO_2$, $O_2$, $H_2O$, and $N_2$. The influences of the space velocity and oxygen concentration on the standard-SCR reaction are analyzed, and it is shown that the low space velocity and high oxygen concentration promote the SCR activity by ammonia. The best $deNO_X$ efficiency is obtained with a $NO_2/NO_X$ ratio of 0.5 because of an enhanced chemical activity induced by the fast-SCR reaction, while at the $NO_2/NO_X$ ratios above 0.5 the $deNO_x$ activity decreases due to the slow-SCR reaction. The oxidation of ammonia begins to take place at about $300^{\circ}C$ and the reaction products, such as $N_2$, NO, $NO_2$, $N_2O$, and $H_2O$, are produced by the undesirable oxidation reactions of ammonia, particularly at high temperatures above $450^{\circ}C$. Also, $NO_2$ decomposes to NO and $O_2$ at temperatures above $240^{\circ}C$. Therefore, $NO_2$ decomposition and ammonia oxidation reactions deteriorate significantly the SCR catalytic activity at high temperatures.

Effects of Gwaruhaengryeon-hwan on COPD and Particulate Matter Induced Lung Injury on a Mouse Model (만성폐쇄성폐질환 및 미세먼지 유발 폐손상 동물모델에서 과루행련환의 효과)

  • Lee, Chul-wha;Yang, Won-kyung;Lyu, Yee-ran;Kim, Seung-hyeong;Park, Yang-chun
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.3
    • /
    • pp.353-366
    • /
    • 2017
  • Objective: This study aimed to use a mouse model to evaluate the effects of Gwaruhaengryeon-hwan (GHH) on chronic obstructive pulmonary disease (COPD) and particulate matter induced lung injury. Materials and Methods: The study was carried out in two ways (in vitro, in vivo). In vitro RAW 264.7 cells (mouse macrophage) were used and analyzed by flow cytometry, ELISA. In vivo lipopolysaccharide (LPS) and cigarette smoke solution (CSS), or coal, fly ash, diesel exhaust particle (CFD) challenged mice were used and its BALF was analyzed by ELISA, lung tissue by real-time PCR. Results: In vitro, GHH maintained an 80-100% rate of viability. So cytotoxicity was not shown. In the ELISA analysis with RAW 264.7 cells, GHH significantly decreased NO over $30{\mu}g/ml$. In the ELISA analysis, GHH significantly decreased $TNF-{\alpha}$, IL-6 over $300{\mu}g/ml$. In the COPD model, the GHH 200 mg/kg dosage group, the application of GHH significantly decreased the increasing of neutrophils, $TNF-{\alpha}$, IL-17A, MIP2, CXCL-1 in BALF, $TNF-{\alpha}$, $IL-1{\beta}$ mRNA expression in lung tissue and histological lung injury. In the CFD induced lung injury model, the GHH 200 mg/kg dosage group, the application of GHH significantly decreased the increase of neutrophils, $TNF-{\alpha}$, IL-17A, MIP2, CXCL-1 in BALF, MUC5AC, $TGF-{\beta}$ mRNA expression in lung tissue and histological lung injury. Conclusion: This study suggests the usability of GHH for COPD patients by controlling lung tissue injury.

Concentration of $NO_2$ and $SO_{2}$ of Bus Terminals in Seoul (서울시 버스터미널의 이산화질소 및 아황산가스 농도)

  • 손부순;장봉기;김영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.51-59
    • /
    • 1997
  • In this study, we researched the concentration of nitrogen dioxide($NO_{2}$) and sulfur dioxide($SO_{2}$) of indoor(waiting room) and outdoor(place of getting on the bus) at the bus terminals (Kang-Nam, Dong-Seoul and Nam-Bu) in Seoul to recognize the degree of pollution by exhaust gas of the diesel engine vehicles, and examine the factor that might affect air pollution of terminals. The concentration of $NO_{2}$ and $SO_{2}$ were measured in winter and summer, and the results of the analysis are as follows : The mean concentration of $NO_{2}$ was $57.49{\pm}21.86$ ppb and the concentration of outdoor with $64.10{\pm}27.69$ ppb was significantly higher than the indoor with $50.89{\pm}10.92$ ppb (p<0.05), and the highest with $73.54{\pm}25.54$ ppb at Kang-Nam terminal (p<0.01). The mean concentration of $NO_{2}$ was $62.80{\pm}24.74$ ppb in winter and $52.19{\pm}17.50$ ppb in summer, and had a not statistical difference. The mean concentration of $SO_{2}$ was $31.71{\pm}8.73$ ppb and the concentration of outdoor with $31.04{\pm}8.89$ ppb was similar to the indoor $32.29{\pm}8.70$ ppb, and the highest with $32.57{\pm}9.01$ ppb at Dong-Seoul terminal (p<0.05). The mean concentration of $SO_{2}$ in winter with $39.67{\pm}4.10$ ppb was significantly higher than in summer with $23.76{\pm}2.61$ ppb (p<0.01). The concentration of outdoor $NO_{2}$ at Kang-Nam terminal was 104, 84 ppb in winter and 81.20 ppb in summer, and had a statistical difference compared with the concentration of indoor $NO_{2}$ at Dong-Seoul and Nam-Bu terminals. The concentration of indoor $NO_{2}$ and $SO_{2}$ were higher than that of outdoor at Kang-Nam and Dong-Seoul terminals, but on the contrary, lower than that of outdoor at Nam-Bu terminal. The concentration of $NO_{2}$ and $SO_{2}$ at Nam-Bu terminal were lower than those at Kang-Nam and Dong-Seoul terminals. While the concentration of $SO_{2}$ show the large difference between winter and summer, that of $NO_{2}$ dose not.

  • PDF

Occupational Factors Influencing the Forklift Operators' Exposure to Black Carbon (지게차 운전원의 블랙카본(black carbon, BC) 노출에 영향을 미치는 직업적 요인)

  • Lee, Hyemin;Lee, Seunghee;Ryu, Seung-Hun;Park, Jihoon;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.313-323
    • /
    • 2017
  • Objectives: This study aimed to assess exposure to black carbon(BC) among forklift operators and to identify environmental and occupational factors influencing their BC exposure. Methods: We studied a total of 23 forklift operators from six workplaces manufacturing paper boxes. A daily BC exposure assessment was conducted during working hours from January to April 2017. A micro-aethalometer was used to monitor daily BC exposure, and information on work activities was also obtained through a time-activity diary(TAD) and interviews. BC exposure records were classified into four categories influencing BC exposure level: working environment, workplace, forklift operation, and job characteristics. Analysis of variance(ANOVA) was used to compare average BC exposure levels among the four categories and the relationships between potential factors and BC exposure were analyzed using a multiple linear regression model. Results: The operators' daily exposure was $12.9{\mu}g/m^3$(N=9,148, $GM=7.5{\mu}g/m^3$) with a range: $0.001-811.4{\mu}g/m^3$. The operators were exposed to significantly higher levels when they operate a forklift in a room ${\leq}20,000m^3$($AM=12.3{\mu}g/m^3$), in indoor workplaces($AM=16.3{\mu}g/m^3$), when they operate a forklift manufactured before 2006 ($AM=13.2{\mu}g/m^3$), a forklift with a loading limit of four-tons($AM=27.1{\mu}g/m^3$), with a roll and bale type clamp($AM=17.1{\mu}g/m^3$), and with no particulate filter($AM=15.7{\mu}g/m^3$). Conclusions: Occupational factors including temperature, smoking, season, daytime, room volume($m^3$), location of operating, and manufacturing era and model of forklift influenced the BC exposure of forklift operators. The results of this study can be used to minimize the BC exposure of forklift operators.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.

DNA Sequence Analysis of 1-Nitropyrene-4,5-Oxide and 1-Nitropyrene-9,10-Oxide Induced Mutations in the hprt Gene of Chinese Hamster Ovary Cells

  • Kim, Hyun-Jo;Kim, Tae-Ho;Lee, Sun-Young;Lee, Dong-Hoon;Kim, Sang-In;Pfeifer, Gerd P.;Kim, Seog K.;Lee, Chong-Soon
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.114-123
    • /
    • 2005
  • Nitropyrene, the predominant nitropolycyclic hydrocarbon found in diesel exhaust, is a mutagenic and tumorigenic environmental pollutant that requires metabolic activation via nitroreduction and ring oxidation. In order to determine the role of ring oxidation in the mutagenicity of 1-nitropyrene, its oxidative metabolites, 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, were synthesized and their mutation spectra were determined in the coding region of hprt gene of CHO cells by a PCR amplification of reverse-transcribed hprt mRNA, followed by a DNA sequence analysis. A comparison of the two metabolites for mutation frequencies showed that 1-nitropyrene 9,10-oxide was 2-times higher than 1-nitropyrene 4,5-oxide. The mutation spectrum for 1-nitropyrene 4,5-oxide was base substitutions (33/49), one base deletions (11/49) and exon deletions (5/49). In the case of 1-nitropyrene 9,10-oxide, base substitutions (27/50), one base deletions (15/50), and exon deletions (8/50) were observed. Base substitutions were distributed randomly throughout the hprt gene. The majority of the base substitutions in mutant from 1-nitropyrene 4,5-oxide treated cells were $A{\rightarrow}G$ transition (15/33) and $G{\rightarrow}A$ transition (8/33). The predominant base substitution, $A{\rightarrow}G$ transition (11/27) and $G{\rightarrow}A$ transition (8/27), were also observed in mutant from 1-nitropyrene 9,10-oxide treated cells. The mutation at the site of adenine and guanine was consistent with the previous results, where the sites of DNA adduct formed by these compounds were predominant at the sites of purines. A comparison of the mutational patterns between 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide showed that there were no significant differences in the overall mutational spectrum. These results indicate that each oxidative metabolite exhibits an equal contribution to the mutagenicity of 1-nitropyrene, and ring oxidation of 1-nitropyrene is an important metabolic pathway to the formation of significant lethal DNA lesions.

Evaluation of the corrosion property on the welded zone of forged steel piston crown with types of filler metals (용접재료별 단강 피스톤 크라운 용접부위의 부식특성에 대한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Since the oil price has been significantly jumped for recent some years, the diesel engine of the merchant ship has been mainly used the heavy oil of low quality. Thus, it has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of most parts surrounded with combustion chamber is more serious compared to the other parts of the engine. Therefore, an optimum weldment for these parts is very important to prolong their lifetime in a economical point of view. In this study, four types of filler metals such as Inconel 625, 718, 1.25Cr-0.5Mo and 0.5Mo were welded with SMAW and GTAW methods in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H2SO4 solution. The weld metal and base metal exhibited the best and worst corrosion resistance in all cases of filler metals. In particular, the weld metal welded with filler metals of Inconel 718 revealed the best corrosion resistance among the filler metals, and Inconel 625 followed the Inconel 718. Hardness relatively indicated higher value in the weld metal compared to the base metal. Furthermore, Inconel 625 and 718 indicated higher values of hardness compared to 1.25cr-0.5Mo and 0,5Mo filler metals in the weld metal.

Study of NO Storage and Reduction on LNT by Micro Bench-Flow Reactor (마이크로 벤치-플로우 리액터를 이용한 LNT 촉매의 NO 흡장과 정화성능에 관한 연구)

  • Yoon, Joo-Wung;Hwang, Seung-Kwon;Hwang, In-Goo;Park, Sim-Soo;Lee, Jin-Ha;Yeo, Gwon-Koo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.789-798
    • /
    • 2011
  • We carry out an experimental investigation to analyze the basic performance of NO(nitric oxide) storage in a lean phase and also analyze the NO reduction achieved by the spraying of reducing agents in the rich phase of the exhaust gas in an LNT(Lean NOx Trap). This is an after-treatment system used to reduce the NOx emissions from a diesel engine. If the stored NO is reduced, we measure the outlet concentration downstream of the LNT. The test LNT material used in the experiments is commercial LNT. After being canned into stainless-steel(SUS304), it was built in a micro bench-flow reactor. Compositions of feed gases, three heated and three no heated gases were sprayed upstream of the LNT to analyze the characteristics. We use various temperatures and space velocities as response variables.