• Title/Summary/Keyword: Diesel engine exhaust gas emission

Search Result 285, Processing Time 0.02 seconds

Effect of Water Induction on the Performance and Exhaust Emissions in a Diesel Engine (II)

  • Ryu, Kyunghyun;Oh, Youngtaig
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1640-1647
    • /
    • 2004
  • This study was to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in an IDI diesel engine. The fuel injection timing was also controlled to investigate a method for the simultaneous reduction of smoke and NOx when water was injected into the combustion chamber. The formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water played a role as a heat sink during evaporating in the combustion chamber, while the smoke was slightly increased with increased water amount. Also, NOx emission was significantly decreased with increase in water amount. A simultaneous reduction in smoke and NOx emissions was obtained when water was injected into the combustion chamber by retarding more 2$^{\circ}C$A of the fuel injection timing than without water injection.

Prediction of NOx emission for marine gas engines (선박용 가스엔진의 NOx 배출량예측에 관한 연구)

  • Jang, Ha-Seek;Lee, Ji-Woong;Lee, Kang-Ki;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.658-665
    • /
    • 2014
  • Natural gas for marine diesel engine is considered as an important and clean source of energy because of simultaneously reducing the emission of NOx, SOx and GHG. Especially with a appearance of shale gas, the using of natural gas has been investigated aggressively and expected to expand rapidly. By the reports, gas engine and diesel engine were both in a similar performance in the power aspect, and the SFOC of gas engine was shown a little better than that of diesel engine. But the characteristics of exhaust gas emission were different according to various combustion technologies. And with lean burn technology, the emission of NOx could be reduced to 85% lower than that of diesel engine. In this paper, it was described that a simulation program has been developed to predict NOx emission. The developed program is adopted two-zone model and Wiebe function for combustion in cylinder. The effects of premixed and diffusive combustion could be simulated by using the excess air ratio as input data. And it was confirmed that the results of simulation were agreed with the general trends of exhaust gas emission according to various combustion conditions such as lean burn, premixed and diffusive combustion.

Characteristic Analysis of Pollutant Emission from Diesel Locomotive Engine (디젤기관차 엔진에서 배출되는 오염물질의 특성 분석)

  • 박덕신;정우성;정병철;김동술
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.561-566
    • /
    • 2002
  • As the air pollution caused by diesel vehicles goes worse, so non-road vehicles exhaust gas standards are more strict in an foreign countries. There is growing evidence that diesel vehicles could play the important role in determining health effects. Most of the particle number emitted by diesel engines is in the nanopaticle range, D$\_$p/ < 50nm, while most of the mass is in the accumulation mode, 50nm < D$\_$p/ < 1000nm range. The aim of this work was to investigate pollutants in the exhaust of railroad diesel rolling stock under load tests.

  • PDF

An Experimental Study on Engine Performance, Exhaust Emissions and PM with a DOC by Appling Biodiesel in a Heavy Duty Diesel Engine (대형디젤 기관에서 바이오디젤을 적용한 DOC에 의한 기관성능, 배출가스 및 PM에 관한 실험적 연구)

  • Park, Man-Jae;Han, Young-Chool;Eom, Myung-Do;Kim, Mi-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1467-1474
    • /
    • 2004
  • Recently, with respect to an increase of energy consumption, many countries have tried to develop alternative fuels. In the United States, less than 10 percent of motor fuels will be displaced by alternative fuels by year 2010, with about 25 percent of the replacement fuels from renewable resources. But the level of exhaust gas is not decreased to the result of an increase of diesel vehicles. Moreover, emission regulations are being intensified by advanced countries such as America and Europe. Because Biodiesel is similar to diesel fuel, it is essential to judge the environmental and health effects deriving from the use of Biodiesel in diesel engine. Therefore, this research could be conformed whether both Biodiesel 20% and Biodiesel 100% are influenced on emission according to sulfur contents by applying DOC. As a result of using the Biodiesel, this research could be conformed though Nox was increased, CO, HC and PM were decreased, and also estimated to compare diesel fuel with the Biodiesel in accordance with engine performance and emission characteristics.

Effects of Parameters of Combustion and Fuel Injection System on Performance and Exhaust Emissions in a Diesel Engine (연소계 및 연료분사계의 구성인자가 디젤엔진의 성능 및 배기 배출물에 미치는 영향)

  • Lee, Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This study investigates a heavy duty diesel engine with swept vol. 12.6L, 4cycle-OHC type to verify the effects of the performance and exhaust gas emission according to the variable specifications of both swirl ratio and flow coefficient in inlet port, combustion bowl and fuel injection system. To meet the high BMEP and stringent exhaust emission standard, a turbocharger with wastegate and an intercooler were installed in the engine. Helical port, major design parameters for combustion chamber and electronic fuel injection pump with 1,000bar were reviewed and applied. Confirmation tests were also performed to meet the target value, $NO_x$ 5.0g/kWh and PM 0.1g/kWh of Euro3 exhaust emission legislation. The results of this study show that not only is it effective to use a relatively bigger bowl size for controlling rapid burning condition due to the decreased in-bowl swirl, but also to use a concave cam with double injection rates to decrease $NO_x$.

Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine (선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

Submicrometer Particle Size Distribution of Emissions from Diesel Engines (디젤엔진에서 배출되는 미세 입자의 크기 분포)

  • 김민철;권순박;이규원;김종춘;류정훈;엄명도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.657-665
    • /
    • 1999
  • Particulate matter produced by diesel engines is of concern to cngine manufactures because of its environmental impact. The majority of diesel particles are in the range of smaller than 1 ${\mu}{\textrm}{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Ultrafinc particles are known to have deleterious effects upon human health cspecially because they penetrate deeply human respiratory tract and have negative effects on the health. In this study, the engine exhaust gas was diluted in a dilution tunnel and the particle size distribution was measured using the scanning mobility particel sizer system. Measurements of the number and the mass concentrations of the diesel exhaust were made under different engine ooperating conditions. The dilution sampling system provided a common basis for collection of the exhaust by cooling and diluting the source emission prior to the measurement. The measurement results showed that the particle size distributions of the exhaust from the diesel vehicles equipment with either heavy-duty or lignt-duty diesel engines, were similar in the particle size range of 0.08~0.2${\mu}{\textrm}{m}$.

  • PDF

The Characteristics of Emission on Simultaneous Application with Biodiesel, Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine (DI 디젤기관에서 바이오디젤유와 함산소연료(EGBE) 동시적용 및 EGR에 의한 배기배출특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.143-148
    • /
    • 2010
  • In this study, the potential possibility of biodiesel fuel(BDF) and oxygenated fuel(ethylene glycolvmono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel (BDF and EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. But torque and brake specific energy consumption( BSEC) didn't have no large differences. Also, the effects of exhaust gas recirculation(EGR) for the reduction of NOx emission has been investigated. Consequently, It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(90 vol-%) and EGBE(10 vol-%) blended fuel and cooled EGR method(5~10%).