• Title/Summary/Keyword: Diesel engine exhaust gas emission

Search Result 285, Processing Time 0.025 seconds

Economical Evaluation of a LNG Dual Fuel Vehicle Converted from 12L Class Diesel Engine (12리터급 경유엔진을 개조한 LNG혼소 화물자동차의 경제성 분석)

  • Han, Jeong-Ok;Chae, Jung-Min;Lee, Jung-Sung;Hong, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • It was measured engine power, specific fuel consumption and exhaust emissions to analyze fuel economy between LNG dual fuel vehicle and base diesel one. The tested LNG dual fuel engine is converted from diesel engine having 12 liter heavy duty class. The power of LNG dual fuel engine is 5% lower than diesel one and the engine efficiency is also lower than diesel case. However the exhaust emission of diesel engine such as PM, NOx, CO and $CO_2$ showed higher than that of LNG duel fuel case except NMHC component. And economical analysis were carried out two cases for an aspect of fuel economy and environmental benefit. As a result, LNG dual fuel vehicle gives some economic benefit to whom both business party and public side respectively though considering the subsidy and price discount for diesel.

An Experimental Study on the characteristic of Exhaust Emissions and the Engine Performacne with Intake Port Water Injection in Diesel Engine (흡기 포트 내 물 분사에 의한 디젤 기관의 배기 유해물 배출 및 기관 성능 변화에 관한 실험적연구)

  • 김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • This study was carried out to reduce NOx emissions from diesel engine and to investigate the variation of engine performance using the water injection. In this study the water was extracted from the exhaust gas and injected directly into the intake port with the inlet charge. The water condensing system operated as a closed system without any supplementary water supply. The experimental parameters such as the revolution the torque and the water injection rate are varied and the result from this experiment found the significant NOx reduction whereas the smoke emission increases as water/air ratio increases as the cases like the EGR. In spite of increasing the quantity of the water injection the engine output was slightly decreased and the specific fuel consumption was increased as was anticipated. Especially the system was founded to be effective on the reduction of the NOx emissions at the high load region relatively.

  • PDF

A Study on the Reduction of Diesel-Engine Emissions (디젤엔진 배기가스의 저감에 관한 연구)

  • Hur, Youn-Bok;Chung, Soon-Suk;Kim, Kwang-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

A Study on Effect of EGR upon Fuel Consumption Rate and NOx Emission in Diesel Engines (디젤기관의 연료소비율 및 질소산화물 배출물에 미치는 EGR의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.76-88
    • /
    • 1995
  • The effects of exhaust gas recirculation(EGR) on the characteristics of NOx emissions and specific fuel consumption rate have been investigated using an eight-cylinder. four cycle. direct injection diesel engine operating at several loads and speeds. The theoretical NO formation concentration is calculated with the equivalence ratio as a parameter of flame temperature to study the effect of EGR on NOx emissions in the diesel combustion. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. It is found that the specific fuel consumption rate is slightly increased with EGR rate. and NOx emissions are markedly reduced owing to the drop of the incoming oxygen concentratio and the increase of equivalence ratio as the EGR rate increases.

  • PDF

Development of Gasoline Engine Renewal CNG Generator and a Study on Exhaust Gas Characteristics of Equivalent Diesel Engine (가솔린 엔진개조 CNG 발전기 개발과 동급 디젤엔진의 배출가스 특성 연구)

  • Lee, Jung-Cheon;Kim, Ki-Ho;Lee, Jung-Min;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.74-79
    • /
    • 2018
  • Compressed natural gas has a high octane number and low particulate emission characteristics as compared with petroleum-based fuels, so it can respond to exhaust gas regulations positively. A natural gas engine has been introduced to improve the quality of the atmosphere, a diversity of fuel, a stable supply, and it has widely been used in city buses and garbage trucks. Recently, the natural gas engine has received attention by overcoming the disadvantage of the theoretical air-fuel ratio method through the development of EGR cooler and engine parts with the development of LP-EGR technology. In this study, we try to develop the cogeneration system that can simultaneously generate electric power and heat by remodeling the gasoline engine to the mixer type CNG engine. As a result, it was able to reduce the NOx (approximately 77%) compared to the diesel engines with same displacement.

Factor Analysis on Exhaust Gas Emissions of Small DI Diesel Engine (직접분사식 소형 디젤엔진의 배기배출물에 대한 인자분석적 고찰)

  • JANG, Se-Ho;KIM, Yeong-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.586-592
    • /
    • 2017
  • This study analyzed the effect of four control factors, RPM, load, EGR rate and cooling water temperature on the exhaust emissions of the small DI diesel engine. The amount of NOx and smoke emissions were measured through experiments for three levels of four control factors according to orthogonal array table, and the effect of four factors on NOx and smoke emissions was analyzed quantitatively. The main results obtained in this study are summarized as follows: 1. RPM, load and EGR rate have a great influence on NOx and smoke emissions, and the effect of cooling water temperature is negligible. 2. As RPM and load increases NOx emission increases and decreases sharply as the EGR rate increases. 3. Smoke emission decreases or increases randomly according to RPM and load, but increases sharply in proportion to the EGR rate. 4. EGR rate has the greatest effect on NOx and smoke emissions by more than 60% of contribution to variance, especially in the case of NOx emission, EGR rate represents a significant result even under the confidence level of 99% on ANOVA.

Nano Particle Emission Charataristics of Biodiesel (바이오디젤의 미세입자 배출특성)

  • Song, Hoyoung;Lee, Minho;Kim, Jaigueon;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • Biodiesels are well-known as alternative fuels. also we know that biodiesels increase NOx and reduce PM(Particulate Matter) by previous many studies. But PM in most these studies was considered about the mass. In this study, We have performed experimental test for PM and exhaust emission by mixed ratio of biodiesel in heavy duty diesel engine. PM was investigated by The nano particle number and the mass. The mass of PM was evaluated by using the standard gravimetric method, The number of PM was evaluated by using the EEPS(Engine Exhaust Particle Sizer), on the ESC(European Steady Cycle) mode. Sampled gas through dilutor was directly extracted from tail pipe and EEPS measured diluted exhaust gas. Biodiesel is made up of used cooking oil. Diesel as base fuel was sold on market and contains 2% biodiesel. The mass of PM was reduced 10% and the nano particle number was increased 5%. The particle number less than 40nm was increased, but the particle number more than 40nm is decreased.

  • PDF

Effects of Aftertreatments of Emission Performance in Heavy duty diesel (후처리장치를 이용한 대형디젤기관에서의 배기성능에 관한 연구)

  • 이상준;최경호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.34-41
    • /
    • 2000
  • The purpose of this research was to investigate the effects of exhaust gas recirculation(EGR) with diesel particulate filter(DPF) on heavy duty diesel engine. The exhaust gas was recirculated to the intake manifold after the smoke was eliminated in the DPF, The major conclusions of this research are i)at each engine speed EGR ratio was able to 60% maximum ii) the amount of NOx emissions was decreased to 90% at high engine load and to more than 60% at low engine load and iii) the amout of NOx emissions was increased to five times according to the increase of engine load but the effect of EGR is more effective at high engine load.

  • PDF

A study on power improvement emission characteristics of marine diesel engine with response power 220HP turbocharger (대응출력 220마력 선박용 과급기에 의한 디젤기관의 출력향상 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.911-917
    • /
    • 2013
  • This is a thesis about the experiment of comparison characteristic of power and exhaust gas in the same condition between diesel engine that is equipped response power 220HP turbocharger to increase effectiveness of the engine which is recently used in a lot of industry which requires high power. Resulting of the experiment with natural aspiration diesel engine and turbocharger diesel engine, difference in low speed is not significant, but in high speed, effectiveness of turbocharger diesel engine is much higher than the other one. In other hand, in exhaust gas experiment, turbocharger model exhausts more $NO_X$ and $O_2$, but it doesn't significantly affect the result when it comes with decreasing of $CO_2$ and effectiveness of increased power characteristic. As a result, the turbocharger diesel engine is economically effective comparing with the natural aspiration diesel engine.

An Experimental Study on the Characteristics of Performance and Exhaust Gas Emission with Charging Diesel Engine on Oxygen-enriched and Cooled-EGR (디젤기관에서 산소과급 및 Cooled-EGR에 의한 성능 및 배출가스 특성에 관한 실험적 연구)

  • 류규현;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Recently, The world is faced with the very serious problems related to the increasing use of the conventional petroleum fuels. The air pollutions in big cities have been occurred by the exhaust emissions from automobiles. Many researchers have been attracted various oxygen-enriched for the measure of these problems. In this study, Oxygen-enriched air supplied to a diesel engine has significant benefits in reducing the particulate matter emission but detects in increasing the NOx. This study concluded that the oxygen-enriched and cooled-EGR might be a good measure to reduce smoke, particulate emission and NOx in diesel engine.