• Title/Summary/Keyword: Diesel engine emission

Search Result 805, Processing Time 0.03 seconds

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.

The Effect of Cooled EGR and Oxygenate Fuel(EGBE) on the Diesel Engine Performance and Emissions (함산소연료(EGBE)와 Cooled EGR이 디젤기관의 성능과 배기배출물에 미치는 영향)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2003
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated fur direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission and unburned hydrocarbons of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.

Simultaneous Reduction of Smoke and NOx with Oxygenated Fuel(DMC) and Cooled EGR method in Diesel Engine (디젤기관에서 함산소연료(DMC)와 Cooled EGR방법에 의한 매연과 NOx의 동시저감)

  • Oh, Y.T.;Choi, S.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for direct injection diesel engine. It is tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate have been investigated. Dimethyl carbonate(DMC) contains oxygen component 53.3% in itself, and it is a kind of effective oxygenated fuel of carbonate group that the smoke emission of DMC is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and EGR method.

  • PDF

Combustion Characteristics of a Direct Injection Agricultural Diesel Engine with Rapeseed Oil (유채유를 연료로 한 직접분사식 농용 디젤기관의 연소특성)

  • Choi, S.H.;Byeon, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.135-139
    • /
    • 2009
  • Harmful exhaust emissions of diesel engines are recognized as main causes of air pollution in these days. But, the direct injection diesel engine is widely used for sake of minimization on energy consumption. Because biodiesel fuel is a renewable and alternative fuel for a diesel engine, its usability is expanded. To investigate the effect of biodiesel fuel(extracted from rapeseed oil) on the characteristics of performance and exhaust emissions in an agricultural diesel engine, the biodiesel fuel derived from rapeseed oil was applied in this study. Smoke emission of esterified rapeseed oil was reduced remarkably by approximately 44.5% at 1500 rpm, full load in comparison with the commercial diesel fuel. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. It was concluded that esterified rapeseed oil could be utilized effectively as an alternative and renewable fuel for agricultural direct injection diesel engines.

A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine (직접분사식 디젤기관의 연소 및 배기에 관한 연구)

  • Kim, Du-Beom;Kim, Gi-Bok;Kim, Chi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

The Study on the Exhaust Emission Characteristics in Diesel Engine According to Intake Air Mass Flow (흡기유량에 따른 디젤엔진에서의 배출가스 특성에 대한 연구)

  • Kim, Hyung-Jun;Park, Yong-Hee;Eom, Myoung-Do;Ko, Jong-Min;Hwang, Jin-Woo;Lee, Sang-Hyun;Kee, Ji-Hoon;Kim, Jeong-Soo
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • The investigation was conducted to analyze the exhaust emission characteristics in diesel engine according to intake air mass flow. In this study, the test diesel engine with a 5,899 cubic centimeter displacement and power of the 260 ps was used to analyze the emission characteristics according to the intake air mass flow. In addition, the test modes were applied by the ND-13 and ETC mode. In order to analyze the emission characteristics, the engine dynamometer with 440 kW and emission gas analyzer (AMA-4000) were utilized. From the experimental results, it is revealed that the NOx and HC emissions in the intake air mass flow of large amount have high levels compared to those in the intake air mass flow of small amount in the ND-13 mode. However, the PM emission was shown the opposite trend in the NOx and HC emission due to the trade-off relation between the NOx and PM.

A study on the reduction of emission by controlled cooling system in a diesel engine (냉각 시스템 제어에 따른 디젤 엔진의 배기가스 저감에 관한 연구)

  • Choi, Kyung-Wook;Cho, Won-Joon;Lee, Ki-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3294-3299
    • /
    • 2007
  • These days the exhaustion of petroleum resources and environmental problems are getting serious. Many researchers are focused on low emission and high performance vehicles. Therefore, we should concern about emission regulation when we design a new car. In this study, we investigated the characteristics of the traditional mechanical engine cooling systems which control the engine temperature using engine speed and wax type thermostat. This experiment used three components which are Radiator fan, water pump and water valve controlled by an electronic system based on the engine status (load, speed). We elucidated how different between traditional mechanical cooling system and electronic cooling system which control coolant temperature and coolant flow rate in a DI diesel engine in this paper. The results revealed a fuel saving and an emission (CO, HC) reduction on NEDC cycle.

  • PDF

An Experimental Study on Exhaust Emission Characteristics by Various Oxygenated Additives in Diesel Engine (디젤기관에서 다종 함산소연료 첨가에 의한 배기배출물 특성에 관한 실험적 연구)

  • 오영택;최승훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.101-110
    • /
    • 2002
  • In this paper, the effects of oxygen component in blended fuel on the exhaust emissions have been investigated far direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for th? commercial diesel fuel and oxygenated blended fuels which have three kinds of fuels and various mixed rates. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbons(C$_1$∼ C$\_$6/) in exhaust gases using gas chromatography to seek the reason far remarkable reduction of smoke emission on various oxygenated fuels. This study carried out by comparing the chromatogram with diesel fuel and diesel fuel blended DGM(diethylene glycol dimethyl ether), MTBE(methyl tart-butyl ether) and EGBE(ethylene glycol mono-n-butyl ether). The results of this study show that individual hydrocarbons as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with commercial diesel fuel.

Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation (직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.

Feasibility Study on Robust Calibration by DoE to Minimize the Exhaust Emission Deviations from Injector Flow Rate Scatters (DoE를 이용한 인젝터 유량 편차에 의한 배출가스 편차에 대한 강건 엔진 매핑 가능성의 검토)

  • Chang, Jin-Seok;Cheong, Jae-Hoon;Jo, Chung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.134-143
    • /
    • 2008
  • The hardware scatters as well as the engine parameters calibration have strong influences on exhaust emissions in recent diesel engines. In this research DoE(Design of Experiments) optimizations were done to study the possibility of minimizing the emission deviations caused by flow rate scatters of the injectors. It has been shown that the optimization of engine calibration, which minimizes the emission deviations, is feasible by establishing a target function representing the emission deviations for test results of maximum, mean and minimum flow rate injectors. It has also been shown that optimization of both emission deviations and emission level is possible by sequential DoE optimizations of the target functions representing the emission level and the emission deviations respectively with the appropriate boundary limits.