• 제목/요약/키워드: Diesel emissions

Search Result 785, Processing Time 0.02 seconds

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine with EGR System (EGR율에 따른 예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;허성근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.66-72
    • /
    • 2002
  • A premixed charge compression ignition engine is experimentally investigated for the reduction of NOx and smoke emissions from diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentrations of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC emission was increased with the increase of premixed ratio. Also, when EGR system was applied to the PCCI diesel engine, the effect of EGR rate on the combustion characteristics and the exhaust gas emissions was discussed.

A Study on the Emission Characteristics of NOx in Medium Speed Diesel Engine (중속 디젤기관의 질소산화물 배출특성에 관한 연구)

  • 우석근;윤건식;윤영환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.526-534
    • /
    • 2000
  • In this study, the characteristics of exhaust emissions in medium speed diesel engine under various operating conditions were investigated through experiments to derive the optimum conditions for minimizing the exhaust emissions, especially, nitrogen oxides. The 355 KW$\times$1200 rpm medium speed diesel engine was intensively examined to investigate the trend of exhaust emissions in case that the parameters affecting combustion conditions such as fuel injection timing, intake air temperature and pressure, engine speed and load were changed. The exhaust emissions for 9 sets of medium speed diesel engine were analyzed in addition. From this study, NOx level could be reduced by 30~50% through the adjustment of retarded fuel injection timing, lowered intake air temperature and increased charging air pressure.

  • PDF

Durability Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 특성)

  • Ryu, Kyun-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.120-127
    • /
    • 2005
  • An IDI diesel engine used to agricultural tractors was fueled with $20\%$ biodiesel fuel(BDF 20) in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. The combustion variation such as the combustion maximum pressure and the crank angle at this maximum pressure was not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about $11\%$, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

Multidimensional Engine Modeling: NO and Soot Emissions in a Diesel Engine with Exhaust Gas Recirculation

  • Kim, Hongsuk;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1196-1204
    • /
    • 2001
  • The effects of EGR(Exhaust Gas Recirculation) on heavy-duty diesel engine performance, NO and soot emissions were numerically investigated using the modified KIVA-3V code. For the fuel spray, the atomization model based on the linear stability analysis and spray wall impingement model were developed for the KIVA-3V code. The Zeldovich mechanism for the formation of nitric oxide and the soot model suggested by Hiroyasu et al. were used to predict the diesel emissions. In this paper, the computational results of fuel spray, cylinder pressure, and emissions were compared with experimental data, and the optimum EGR rates were sought from the NO and soot emissions trade-off. The results showed that the EGR is effective in suppressing NO but the soot emission was increased considerably by EGR. Using cooled EGR, soot emission could be enhanced without worsening of NO.

  • PDF

An Effect of Operating Conditions on Exhaust Emissions in a Small Turbocharged D.I. Engine (직접 분사식 소형 과급 디젤엔진의 운전조건이 배기 배출물에 미치는 영향)

  • Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.12-17
    • /
    • 2002
  • Recently, the world is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. So, many of researchers have studied to reduce the exhaust emissions of diesel engine. This study was investigated for various exhaust emissions according to operating conditions in a turbocharged D.I. diesel engine. As a result of experiments in a test engine, the $CO_2\;and\;NO_x$ increased with increasing load, the $CO_2$ and CO decreased with increasing charge air pressure in manifold, the CO decreased with increasing cooling fresh water temperature, and the $NO_x$ decreased with worming cooling fresh water before engine start.

  • PDF

A study of the effects of engine speed and load on diesel emissions (엔진속도와 부하가 디젤 배기가스에 미치는 영향에 관한 연구)

  • 이재순;김승무;서정일
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.47-57
    • /
    • 1982
  • Smoke, Hydrocarbon and Garbon Monoxide emissions of concern in environmental pollution on AVDS-170-2D diesel engine were studied experimentally and past studies on emissions of diesel engine were investigate. Engine speed and load were considered as variable factors influencing the emissions. The test results of a multicylinder, direct injection and turblcharged 4 cycle diesel engine were compared with past studies. Both emission levels of experimental study and past studies were markedly influenced by engine operation factors. The results obtained in this study can be summarized as follows; 1) Smoke intensity is proportional to engine load and varies with engine speed. 2) Hydrocarbon and nitric oxides emissions vary with engine speed and load. 3) Garbon monoxide emission is insensitive to engine speed and varies with engine load.

  • PDF

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

Worldwide Emission Regulations for Commercial Vehicle Diesel Engines and Emission Reduction Technologies Trend (각국 Heavy Duty 상용차(버스, 트럭) 탑재 디젤엔진의 배기규제동향과 대응기술 소개)

  • 한제원
    • Journal of the Korean Professional Engineers Association
    • /
    • v.37 no.5
    • /
    • pp.47-50
    • /
    • 2004
  • Diesel engines are the major sources of pollutants in the cities and each country is trying to enforce their emission regulations to reduce the diesel emissions. Expecially Commercial diesel engines have large displacement and they are the major sources of diesel emissions in the cities. This paper introduces the major countries' Diesel Engine Regulations and explains the emission reduction technologies that are currently applied and will be applied in the future.

  • PDF

Effect of Injection Parameters on Combustion and Exhaust Emission Characteristics in a Small Common-rail Diesel Engine (분사 조건의 변화가 소형 커먼레일 디젤 엔진의 연소 및 배기 특성에 미치는 영향)

  • Kim, Myung-Yoon;Lee, Doo-Jin;Roh, Hyun-Gu;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The characteristics of combustion and emissions were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. This study presents an experimental study of the effect of engine speed, injection timing, injection pressure and pilot injection timing on the combustion and exhaust emissions. The engine speeds were 1000 and 2000rpm and the corresponding injection pressures were 50 and 100MPa. Experimental results show that NOx emissions decrease with retarded injection timing, while HC and CO emissions increases. Higher injection pressure increases NOx with lower soot emissions. For the case with the pilot injection prior to main injection, the ignition delay is shortened and the premixed combustion ratio decreases. Also NOx and soot emissions are decreased with increase of pilot injection advance.

Combustion and Exhaust Emission Characteristics of DME in a Common-rail Diesel Engine (커먼레일 디젤엔진에서 DME의 연소 및 배기 특성)

  • An, Sang-Gyu;Kim, Myung-Yoon;Yoon, Seung-Hyun;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2007
  • An experiment was conducted with a common-rail direct injection diesel engine operated with neat dimethyl ether (DME). In order to investigate the effect of combustion characteristics and emission reduction of DME fuel, the experiment was performed at various injection pressure from 35 MPa to 50MPa. Also, the exhaust emissions from the engine were compared with that of diesel fuel. In this work, Cooled EGR was implemented to reduce $NO_x$ exhaust emissions. The results showed that DME has shorter ignition delay than that of diesel fuel. Despite of the increased $NO_x$ emissions with DME at an equal engine power compared to the case of fueling diesel, the engine emitted zero soot emissions all over the operating conditions in this work. $NO_x$ emission can be decreased greatly by adopting 45% of EGR while maintaining zero soot emission. Judging from the result of engine test, DME is a suitable fuel for common-rail diesel engine due to it's clean emission characteristics.