• Title/Summary/Keyword: Diesel combustion

Search Result 969, Processing Time 0.027 seconds

Effect of Injection Parameters on Combustion and Exhaust Emission Characteristics in a Small Common-rail Diesel Engine (분사 조건의 변화가 소형 커먼레일 디젤 엔진의 연소 및 배기 특성에 미치는 영향)

  • Kim, Myung-Yoon;Lee, Doo-Jin;Roh, Hyun-Gu;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The characteristics of combustion and emissions were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. This study presents an experimental study of the effect of engine speed, injection timing, injection pressure and pilot injection timing on the combustion and exhaust emissions. The engine speeds were 1000 and 2000rpm and the corresponding injection pressures were 50 and 100MPa. Experimental results show that NOx emissions decrease with retarded injection timing, while HC and CO emissions increases. Higher injection pressure increases NOx with lower soot emissions. For the case with the pilot injection prior to main injection, the ignition delay is shortened and the premixed combustion ratio decreases. Also NOx and soot emissions are decreased with increase of pilot injection advance.

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Effects of the Combustion and Emission Characteristics in a CRDI Engine Biodiesel Blended Fuel with and EGR rate (커먼레일 디젤기관에서 바이오디젤 혼합 연료와 EGR율이 연소 및 배기특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3383-3388
    • /
    • 2014
  • An experimental study was performed to compare the characteristics of the combustion pressure and exhaust emissions in the case of using pure diesel when the EGR rate was changed in a CRDI 4-cylinder diesel engine with those using biodiesel blended and pure diesel fuel. In this study, the EGR rate variation were conducted at an engine speed of 2000rpm with fuel with a biodiesel blended rate of 20%. The combustion pressure of the biodiesel blended rate 20% and pure diesel fuels decreased with increasing EGR rate. The IMEP of biodiesel was higher than that of ULSD (Ultra low sulfur diesel). The emission results showed that the NOx emission of biodiesel blended fuel with increasing EGR rate was higher than that of ULSD. In addition, the NOx emission of biodiesel blended and diesel fuel decreased with increasing EGR rate. The CO and soot, $CO_2$ emissions increased with increasing EGR rate, and the CO and soot emissions from the biodiesel blended fuel were lower than that of ULSD but the $CO_2$ emissions were higher.

Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine (디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

Study on Combustion Characteristics of Pre-combustion Chamber Type Diesel Engine with Different Throat Shape (예연소실식 디젤엔진의 분구 형상 변화에 따른 연소 특성 연구)

  • Choi, Jonghui;Lee, Seungpil;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.116-121
    • /
    • 2017
  • Pre-combustion chamber type indirect diesel engines have different combustion characteristics compared with those of common rail direct injection engine. The CONVERGE, specific engine CFD program, was used to simulate hollow cone spray model and combustion. The air-fuel mixture flow propagating from pre-combustion chamber to cylinder was concentrated at top half and center of the pre-combustion chamber throat. Stronger mixture flow was formed at smaller and longer throat cases. As a result, thermal efficiency and fuel consumption were improved for modified throat shape and the soot emission was also reduced.

Modeling the Dual-Fuel Combustion of Natural Gas and Pilot Distillate Injected Directly into a Diesel Combustion Bomb (디젤연소용기에 직접분사된 천연가스와 파일럿오일의 복합연소 모델링)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.155-164
    • /
    • 1996
  • Dual-fuel engines are being researched with emphasis on the possible types of natural gas supply systems. Hence, a three-dimensional combustion model by using finite volume method was developed to provide a fundamental understanding of the auto-ignition of pilot distillate and subsequent burning of natural gas, when the natural gas as well as the distillate was directly injected into a quiescent diesel engine like combustion bomb tests and the numerical results were investigated for the mixed combustion phenomena. With high-pressure natural gas injection, it was found that the gaseous fuel injection characteristics had to be well harmonised with that of the pilot distillate. For better combustion efficiency, however, further researches are required for the optimisation of injection system in the existence of air motion.

  • PDF

COMBUSTION CHARACTERISTICS OF ESTERIFIED RICE BRAN OIL AS AN ALTERNATIVE FUEL IN A DIESEL ENGINE

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.399-406
    • /
    • 2006
  • The smoke emission of diesel engines is being recognized as one of the major source of the air pollution problems. This study investigates the potential of esterified rice bran oil to reduce smoke emission as an alternative fuel for diesel engines. Because the esterified rice bran oil has approximately a 10.5% oxygen content, the combustion of the diesel engine improved and exhaust smoke decreased. Gas chromatography was used to analyze not only the total amount of hydrocarbon but also the amount of hydrocarbon components from $C_1$ to $C_6$ in the exhaust gas to determine an exact source responsible for the remarkable reduction in the smoke emission. The number of individual hydrocarbon($C_1{\sim}C_6$) as well as the total amount of hydrocarbon of esterified rice bran oil reduced significantly compared to that of hydrocarbon of diesel fuel.

A Study on Emission Reductions of Diesel Engine Using Plasmatron Fuel Converter (플라즈마트론을 이용한 디젤 엔진의 매연저감에 관한 연구)

  • Ki, Ho-Beom;Kim, Bong-Soo;Kwak, Yong-Hwan;Kim, Woo-Hyung;Lim, Won-Kyung;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.104-109
    • /
    • 2006
  • Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in diesel engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/absorbers and particulate traps for diesel engine exhaust after-treatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.

  • PDF