• Title/Summary/Keyword: Diesel VOCs

Search Result 31, Processing Time 0.022 seconds

Removal Characteristics of Soot and NO by Nonthermal Plasma and Radical in a Diesel Engine (비열플라즈마와 라디칼을 이용한 디젤엔진의 매연 및 NO 제거 특성)

  • Jang, Yeong-Jun;Choe, Seung-Hwan;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.547-554
    • /
    • 2002
  • We are facing the serious environmental pollution difficulties such as acid rain, green house effects, etc. The gaseous matter NOx, SOx, VOCs which are regarded as main factors for these current pollutions are mainly emitted from power plants and vehicles. Therefore several leading countries are regulating the emissions strictly, especially the exhaust emissions from a Diesel engine without an aftertreatment device. The objective of this study is to find out soot and NO removal characteristics focused on the emissions of a Diesel engine by using nonthermal plasma for each engine speeds and loads. Electrostatic precipitator(wire-to-plate type reactor) is used for soot removal. Radicals generated from outer air and put into a mixing chamber in the end of exhaust line are used for NO removal. Concentration of exhaust emissions is analyzed from the gas analyzer(KaneMay) and FTIR to estimate by-products.

Distribution Characteristics and Source Estimation of Volatile Organic Compounds in the Ambient Air of Industrial Complex in Gwangju (광주지역 산업단지 대기 중 휘발성유기화합물 분포 특성 및 배출원 추정)

  • Min-Jin Kim;Ok-Hyun Park;Yoon-Cheol Yang;Jin-Hwan Park;Ji-Yong Yu;Hee-Yun Jung;Gwang-Yeob Seo;Jong-Min Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this study, we investigated the characteristics of Volatile Organic Compounds(VOCs) emission from painting and printing facilities in the Pyeongdong industrial complex in Gwangju. In addition, the objective was to understand the distribution characteristics of VOCs in the ambient air in industrial complexes affected by painting and printing facilities. The painting facility mainly emitted toluene, acetone, butyl acetate, 4-methyl-2-pentanone, ethyl acetate, 1-butanol, methyl ethyl ketone, m,p-xylene, o-xylene, 4-ethyltoluene, ethylbenzene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The main emission components in printing facilities were methyl ketone, ethyl acetate, acetone, 2-propanol, toluene, heptane, and butyl acetate. Ethyl acetate, toluene, 2-butanone, acetone, butyl acetate, 2-propanol, xylenes, and 4-methyl-2-pentanone were detected in the ambient air of the Pyeongdong industrial complex, consistent with the VOCs emitted by painting and printing facilities. The average concentration of seasonal TVOCs followed an order of winter > fall > spring > summer, whereas the concentrations of daytime and nighttime TVOCs were generally higher at night than those during the day, and the wind speed was greater during the day than it was at night. Based on a factor analysis of VOCs in the ambient air of Pyeongdong industrial complex, it is considered that organic solvents used in coating, printing, and electronics manufacturing facilities, as well as diesel vehicle emissions played a major role.

Effect of DPF Regeneration on Emission Characteristics in Diesel Engines (DPF 재생이 경유자동차 배출특성에 미치는 영향)

  • Moon, Taeyoung;Son, Jihwan;Yun, Hyunjin;Hong, Heekyoung;Choi, Kwangho;Kim, Jeongsoo;Kim, Heekyoung
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.142-148
    • /
    • 2014
  • In this study, characteristics of gaseous pollutants and particulate matter were investigated on the condition of DPF regeneration and normal DPF condition. THC, CO, $CO_2$, NOx, and $CH_4$ were analyzed by MEXA-7200H and CVS-7100 respectively. Particulate Matter (PM) was measured by difference in weight of Membrane filter. Particle Number (PN) was measured by CPC analyzer. And Sulfate, Nitrate, Organic were measured by Aerosol Mass Spectrometer (AMS). As a result, gaseous pollutants and particulate matter were detected in higher concentration during DPF regeneration than normal DPF condition. And the PN increased by 94%, the fuel consumption was reduced by 29% on DPF generation process. Sulfate, Nitrate and Organic were undetectable level during normal DPF condition. But the highest concentration of Sulfate, Nitrate and Organic were measured as $100{\mu}g/m^3$, $20{\mu}g/m^3$ and $15{\mu}g/m^3$ respectively on DPF regeneration condition. VOCs concentrations (Benzene, Toluene, Ethylbenzene, Xylene) were analyzed by using PTR-MS. Benzene and Toluene emission have little or no change depending on DPF regeneration. But the Ethylbenzene and Xylene have comparatively low emissions on DPF regeneration.

TPH Removal of Oil-Contaminated Soil by Hot Air Sparging Process (고온 공기분사공정에 의한 유류오염대수층의 TPH 제거)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.665-675
    • /
    • 2007
  • In-situ Air Sparging (IAS, AS) is a remediation technique in which organic contaminants are volatilized from saturated zone to unsaturated layer. This study focuses on the removal and interaction of Volatile Organic Compounds (VOCs) and $CO_2$, and Total Petroleum Hydrocarbon (TPH) in saturated and unsaturated, and air space zone on the unsaturated soil surface. Soil sparging temperature of hot air has risen to $34.9{\pm}2.7^{\circ}C$ from $23.0{\pm}1.9^{\circ}C$ for 36 days. At the diffusing point, fluid TPH concentrations were reduced to 78.7% of the initial concentration in saturated zone when hot air was sparged. The TPH concentrations were decreased to 66.1% for room temperature air sparging. The amount of VOCs for hot air sparging system, in air space, was approximately 26% larger than constant air sparging system. The amount of $CO_2$ was 4,555 mg (in unsaturated zone) and 4,419 mg (in air space) when hot air was sparged was 3,015 mg (in unsaturated zone) and 3,634 mg (in air space) for room air temperature in the $CO_2$ amount. The removals of VOCs and biodegradable $CO_2$ through the hot air sparging system (modified SVE) were more effective than the room temperature air sparging. The regression equation were $Y=976.4e^{-0.015{\cdot}X}$, $R^2=0.98$ (hot air sparging) and $Y=1055e^{-0.028{\cdot}X}$, $R^2=0.90$ (room temperaure air sparging). Estimated remediation time was approximately 500 days, if final saturated soil TPH concentration was set to 1.2 mg/L application of tail effect.

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Potential Exposure to Air Pollutants for Driver and Its Control Using Commercial Air Cleaning Device Inside Vehicle (차량 운전자의 공기오염물질 잠재적 노출 및 차량용 공기청정기에 의한 제어)

  • Kim Dae-Won;Kim Moon-Hyeon;Yang Won-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.481-486
    • /
    • 2004
  • Vehicle occupant exposure to air pollutants has been a subject of concern in recent years because of higher levels of air pollutants inside gasoline or diesel-using vehicle, comparing to the surrounding atmosphere. Contrary to previous studies, fuel of vehicles operated in this study was liquefied petroleum gas (LPG). This study examined the potential exposure and removal efficiency of selected volatile organic compounds (VOCs), nitrogen dioxide ($NO_2$) and respirable suspended particle (RSP) by commercial air cleaning device inside vehicle under different ventilation conditions. Vehicle concentrations inside of benzene, toluene, m,p-xylene, $NO_2$ and RSP were lower under the low ventilation condition. This was indicated that outdoor air pollutants could affect the vehicle air quality inside in case metropolitan cities such as Daegu. The urban vehicle concentrations inside of benzene, toluene, m,p-xylene, $NO_2$ and RSP with air cleaning device were higher than those without air cleaning device. This means that the use of air cleaning device equipped with activated carbon filter, which was used in this study, in the interior of vehicles could be expected to reduce the vehicle occupants exposure to air pollutants effectively. In batch type reactor of laboratory scale, removal efficiencies of air cleaning device used were $97.0\%,\;95.7\%,\;94.6\%\;and\;85.5\%$ respectively in benzene, toluene, m,p-xylene and $NO_2$.

Air Quality and PM10 Source Analysis on the Railway Vehicles (철도차량에서의 공기질 현황 및 PM10 오염원 분석)

  • Park, Duck-Shin;Kim, Dong-Sool;Cho, Young-Min;Kwon, Soon-Bark;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.311-321
    • /
    • 2007
  • Nowadays, concerns have much more growing regarding indoor air quality (IAQ) on the public transportation including railway vehicles. Last year Korea Ministry of Environment (ME) set new guideline for public transportation. In this study several factors were analyzed which may affect comfortableness of railway passenger cabin, and we monitored IAQ parameters (PM10, CO, $CO_2$, VOCs, temperature and humidity) to investigate the present pollution in passenger cabin. In general, the railway air quality was satisfactory. The PM10 and $CO_2$ level on all passenger cabin were below the new guideline level 1 for PM10 $(200{\mu}g/m^3)\;and\;CO_2(2,000ppm)$. Clustering method was carried out to classify the air polluting pattern of the cabin. As a result, the pollutants could be classified to 4 clusters and the origin of pollution is soil, diesel exhaust gas, abrasion of rail and plume.

A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission (중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.

The Effective Evaluation of Soil Remediation Technology by Gas Phase Concentration Trend (가스상 물질의 농도변화를 이용한 오염토양 복원의 타당성 평가)

  • Park, Duck-Shin;Jung, Woo-Sung;Kang, Sun-Ki;Kim, Moo-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1233-1241
    • /
    • 2000
  • The purpose of this study is to see the remediability and pilot system operating condition on diesel contaminated areas. Air permeability(k) and trend of gas phase ($O_2/CO_2/VOCs$) concentration to determine the remediation rate of the contaminated sites are very important. So we tested air permeability and trend of gas phase concentration. Throughout soil vapor extraction(SVE) and bioventing hybrid pilot test on different conditions, the range of air permeability(k) was 1985~1194 darcy. The tests result in soil vapor extraction and bioventing hybrid system was appropriate on this test sites, and the suitable injection air flow rate was $3.5m^3/hr$.

  • PDF