• Title/Summary/Keyword: Diesel VOCs

Search Result 31, Processing Time 0.023 seconds

A Study on the VOCs Emission Characteristics by the Light Duty Diesel and LPG Fueled Vehicles (소형승합차량 및 RV차량의 휘발성 유기 화합물 배출특성 변화에 관한 연구)

  • Eom, Myung-Do;Ryu, Jung-Ho;Han, Jong-Su;Lyu, Young-Sook;Kim, Dae-Wook;Kim, Jong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Emissions from automobiles have long been considered a prime source of pollutants involved in smog formation and ozone production. Especially VOCs are associated with serious environmental problems such as photo-chemical smog as well as human health effects. Since motor vehicles are a major source of VOCs, estimating of emission from mobile source is the most important factor to control VOCs. VOCs are emitted from various pollution like motor vehicles, mobile and stationary source that has characteristics of toxicity, cancer-causing, bio-accumulation, durability in air and diffusion can exert a bad influence upon human health and environment. However we don't have any standard or regulation about VOCs emissions. This study is summarized as VOCs emission characteristics from in-use light-duty diesel and LPG fueled vehicles. The vehicle exhaust-gas test mode is CVS cycle and nier-10 cycles that developed on EPA and National Institute of Environmental Research. TO-14 method (Toxic Organic) was chosen for VOCs analysis from EPA in USA. This study results will be useful when make a emission factor and rule making of emission standard about domestic VOCs emission for the improve to air condition.

Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy duty Trucks for Euro 5 (Euro 5 경유 대형트럭의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Mun, Sunhee;Seo, Seokjun;Kim, Jounghwa;Jung, Sungwoon;Chung, Taekho;Hong, Youdeog;Sung, Kijae;Kim, Sunmoon
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • Emission characteristics of regulated pollutants (CO, NOx, HC and PM) and hazardous air pollutants (HAPs) from diesel heavy duty trucks equipped with EGR+pDPF and SCR for Euro 5 emission standards were investigated using a chassis dynamometer. In the case of regulated pollutants, diesel heavy duty trucks with EGR+pDPF emitted 79% less CO than those with SCR. Also, those with the SCR emitted 36% less NOx than those with the EGR+pDPF. The results of VOCs have show that alkanes emissions for heavy duty trucks with the EGR+pDPF and the SCR have been higher than alkenes, cycloalkanes and aromatics. In the case of individual VOCs, the highest of propene emissions for 11.3~16.1% occupied. For aromatics group, benzene emissions are the highest percentage for 4.4~15.5%. In the future, the results of present study will provide basic data to set up HAPs emissions inventory for mobile source.

Application of Biofilter for the Removal of VOCs Produced in the Remediation of Oil-Contaminated Soil (유류오염 토양의 복원과정에서 발생되는 휘발성 유기화합물의 제거를 위한 바이오필터의 적용)

  • Lee Eun Young;Choi Woo-Zin;Choi Jin-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • This research was investigated the applicability of the biofiltration technology for the removal of volatile organic carbons (VOCs) produced from the bioremediation of oil contaminated soil. Diesel was used as surrogate for oil and, two types of biofilter systems made of ceramic and polymer media were compared for the removal efficiencies of diesel VOCs at different inlet concentrations and space velocity (SV) conditions. During the first 30-d operation, the removal efficiencies of the biofilter packed with polymer and the biofilter packed with ceramic were investigated at constant SV of $153\;h^{-1}$ When inlet concentrations of diesel VOCs were below 10 ppmv, the average removal efficiencies of the polymer biofilter and the ceramic biofilter were average $67\%\;and\;75\%$, respectively. When the inlet concentration increased to 30 ppmv, the VOC removal efficiency in the polymer biofilter was $80\%$, while the average removal efficiency in the ceramic biofilter was $60\%. Effect of the inlet concentration and SV on the removal efficiency of total diesel VOCs was investigated. As SV increased from $153\;h^{-1}$ to $204\;h^{-1}$ and $306\;h^{-1}$, the removal efficiency of total diesel VOCs was decreased gradually. The average removal efficiency of the biofilter packed with polymer carrier was decreased from $82\%\;to\;80\%\;and\;77\%$. The biofilter packed with polymer carrier showed that the removal efficiency of benzene and toluene were maintained within the range of $81\%\~86\%$. In contrast, for the biofilter packed with ceramic carrier, when SV increased from $153\;h^{-1}$ to $204\;h^{-1}$ and $306\;h^{-1}$, the removal efficiency of benzene decreased from $87\%\;to79\%\;and\;74\% . respectively. The removal efficiency of toluene decreased from $80\%\;to\;77\%\;and\;76\%$ at SV of $153\;h^{-1},\;204\;h^{-1}\;and\;306\;h^{-1}$, and $306\;h^{-1}$, respectively.

Biofilter를 이용한 diesel VOCs의 생물학적 제거

  • 이은영;최우진;최진규;김무훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.347-350
    • /
    • 2002
  • The petrochemical products can cause soil and groundwater contamination during their transportation and the use of the products, and while being contained in underground storage tanks(USTs) throughout the leakage. To treat the contaminated soil, the bioventing method is suitable for the remediation of semi-volatile compounds, such as diesel and kerosene. Biofiltration is one of possible method to treat the off-gas produced in the process of the bioventing. This study is related to the usage, effectiveness of treatment, and feasibility of two types of biofilter system made of ceramic-compost and polymer respectively to treat diesel VOCs at constant retention time of 20 sec. Compost biofilter showed the average removal efficiency of 73 % when the inlet concentration increased to 20 ppmv. Increased the inlet concentration decreased the microbial activities as well as the removal efficiency. On the contrary, the removal efficiency of the polyurethane biofilter was maintained at 88 % at the inlet concentration of 13 ppmv during ten days and was obtained to 80 % at the inlet concentration of 30 ppmv in spite of the drop of the efficiency in the sudden increase of the inlet concentration. At the beginning of the experiment it showed low removal efficiency at low inlet concentration due to the low microbial activity, however, as experiments proceed the removal efficiency could be obtained more than 80% at high inlet concentration.

  • PDF

Estimation of Air Pollutant Emissions for the Conversion of Diesel to CNG in the Busan Metropolitan Area (부산지역 경유버스를 CNG버스로 대체시 발생하는 대기오염물질 배출량 산정 및 변화 분석)

  • Bang, Jin-Hee;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.241-251
    • /
    • 2012
  • The emissions of several air pollutants ($NO_x$, CO, VOCs, etc.) for the replacement of all diesel buses by Compressed Natural Gas (CNG) buses were estimated in the Busan Metropolitan Area (BMA). These emissions were calculated from emission factors considering the different driving speeds with bus routes, distance traveled, and deterioration factors. For the purpose of this study, three categories of fuel type were selected: (1) the combination of diesel (65%) and CNG buses (35%) (DSL+CNG case), (2) all diesel buses (DSL case), and (3) all CNG buses (CNG case). The emissions of $NO_x$ and CO in the CNG case were estimated to be significant decreases (by about 50% and 98%, respectively) relative to the DSL case. Conversely, the emission of VOCs (980.7 ton/year) in the CNG case were a factor of 3.3 higher than that (299.8 ton/year) in the DSL case. In addition, the diurnal variations of emissions between two city buses (e.g. diesel and CNG) and all other vehicles were distinctly different because the two city buses operate at a regular time interval. Our overall results suggest the possibility that the pollutant emissions from the CNG buses can exert less influence on air quality in the target area than those from the diesel buses.

Exhaust VOCs Emission Characteristics from Motor Vehicles (자동차의 배기관 VOCs 배출 특성)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Han, Jong-Soo;Kim, Sun-Moon;Lim, Cheol-Soo;Kim, Dae-Wook;Lee, Dong-Min;Lee, Joong-Koo;Eom, Myung-Do;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources (휘발성 유기화합물의 주요 배출원의 배출물질 구성비에 관한 연구-오존 생성 전구물질을 중심으로-)

  • 김소영;한진석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.233-240
    • /
    • 2001
  • The composition of volatile organic compounds (VOCs) was anlyzed for major emission sources such as vehicle exhaust, gasoline and diesel vapor, organic solvent vapor, and butane fuel gas. Low carbon-numbered hydrocarbons were found to be the dominant components of gasoline vehicle exhaust. In gasoline evaporative vapor, the predominant constituents were found to be butane and iso-pentane regardless of ambient air temperature. In case of diesel evaporative vapor was similar to those of gasoline evaporative vapor. The composition of organic solvent vapor from painting, ink and petroleum consisted mostly or aromatic compounds such as toluene and m, p, o-xylene. The hydrocarbon fraction of butane fuel gas. which is used by portable bunner, consisted mainly of propane (34%) and butane(70%).

  • PDF

Estimation of Quantitative Source Contribution of VOCs in Seoul Area (서울지역에서의 VOCs 오염원 기여도 추정에 관한 연구)

  • 봉춘근;윤중섭;황인조;김창녕;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.387-396
    • /
    • 2003
  • A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).

NOx Removal Characteristics Using Radical In A Diesel Engine (Radical을 이용한 디젤 엔진의 NOx 제거 특성)

  • Jeon, J.H.;Choi, S.H.;Jeon, C.H.;Chang, Y.J.;Lee, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.715-719
    • /
    • 2000
  • It is reported that we are facing the serious environment pollution difficulties such as acid rain, green house effects, etc. The gaseous matter CO, NOx, SOx, VOCs which are regarded as main factors for these current pollutions are mainly emitted from power plants and vehicles. Therefore several leading countries are regulating the related laws strictly, especially exhaust emissions from a Diesel engine without an after treatment device. The Objective of this study is to find out NOx removal characteristics focused on emissions of a Diesel engine using radical at each engine speed and load. It is generated from outer air and put into a mixing chamber in the end of exhaust line. In addition, the optimum temperature condition to activate reaction by radical is experimentally carried out. Concentration of exhaust emissions is analyzed from the gas anlayzer(KaneMay) and FTIR to estimate by-products.

  • PDF