• Title/Summary/Keyword: Diesel Engine starting

Search Result 31, Processing Time 0.032 seconds

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.

Dynamic Modelling and Simulation of Engine Starting Process for Optimization of Diesel Engine Cold Starting System (디젤 엔진 저온 시동 시스템 최적화를 위한 엔진 시동 과정의 동적 모델링 및 시뮬레이션)

  • Park, Jung-Kyu;Bae, Keun-Sik;Yoo, Cheon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • To optimize the cold start process of a 4-stroke, 8 cylinder Diesel engine, a dynamic simulation model from cranking to idle speed is developed. Physically-based first order starter motor dynamics are used to model the performance of starting process which is very complex. These equations are solved using numerical schemes(Petzold-Gear BDF method) to describe the starting process of diesel engine and to study the effects of starting parameters. The validity of this model is examined by start test. This model can be served as a tool for computer aided control systems design to improve cold improve cold start performance.

  • PDF

The Study of the 160Ah Ni-MH battery for Diesel Engine Starting (디젤 엔진 시동을 위한 160Ah급 니켈 수소(Ni-MH) 축전지)

  • Park, Dong Pil;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • For this study, a 160Ah Ni-MH battery is produced with parallel arranged two 80Ah Ni-MH batteries as an unit, in order to start diesel generator(engine) in place of Lead Acid battery or Ni-cd battery which contain indicated toxic pollutant of Environmental pollution, by high capacity Ni-MH battery. And the ternary electrolyte recipe is requested to develop proper electrodes of the 160Ah Ni-MH battery, and then the 160Ah battery can be tested at high rate discharging performance. Zn is added to negative electrode for the improvement of performance. 160Ah Ni-MH battery has been tested in various experiments for diesel engine starting. As the result, diesel engine starting is found successfully.

Smokeless Starting for 4 Cycle Medium Speed Diesel Engine (4행정 중속 디젤기관의 스모크리스 시동)

  • Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.11-16
    • /
    • 2014
  • Although smoke emitted from ships is not included in IMO(International Maritime Organiztion) regulation yet, it is one of the substance what is polluting mainly the air. Especially, its concentration is very high when an engine is started and a load is rapidly changed. This is caused by unburned fuel what is injected more than necessary quantity after combustion period. It is possible to decrease smoke concentration emitted at starting engine by controlling fuel injection quantity, but it is concerned that time to rated speed must be spent. Then a governor what can reduce the smoke concentration without a loss of time to rated speed is needed. We adopted a electro-hydraulic governor what can control dual fuel start limit function and achieved very low level of smoke concentration without greater the loss of time to rated speed.

A Study on the Operation Performance of Diesel Engine by using of Soybean Oil Fuel (디젤엔진의 콩기름연료에 의한 운전성능에 관한 시험)

  • 이기명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4259-4264
    • /
    • 1976
  • This paper, is about the test on the operating performance of diesel engine by using of soybean oil which farmers could supply in their farm yard. The diesel engine used is a swirl-chamber type, four stroke cycle with single cylinder, air cooling and its rated horse power is 2 PS per 1300 rpm. Several results obtained are as follows; 1. The starting performance of diesel engine with soybean oil is almost the same as that with light oil. 2. The variation of engine speed according to various engine load is small when soybean oil is used compared with light oil. It is considered that soybean oil is desirable for the purpose of industerial power machine fuel. 3. The specific fuel consumption increases approximately 10 percent high in the condition of rated horse power and maximum horse power and shows less or same during the load test in low velocity, when soybean oil is used 4. Though the brake thermal efficiency in the condition of rated horse power and maximum horse power is inclined to decrease when soybean oil is used compared during the load test in low velocityt shows good inclination.

  • PDF

Starting of Farming Diesel Engines According to Characteristics of Light Oil at Low Temperature (경유의 저온특성에 따른 농용 디젤엔진의 저온시동성)

  • 신승엽;김학주;이용복;김병갑;윤진하;김기택;양대준
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • This study was carried cut to get basic data of troubles in starting and supply of farm diesel engines in cold winter. The results of the study are summarized as follows: 1. As the result of farm survey. the proportions of farms which had starting problems or troubles in fuel supply in cold winter for the last 5 years were 38% for the farms with power-tillers and 32% for the farms with tractors. Most of the farms which had starting problems or troubles in fuel supply in cold winter used light oil for summer. spring or fall rather than for winter. 2. As the result of fuel supply test, fuel supply was stopped at -6$^{\circ}C$ and -18$^{\circ}C$ for summer light oil and winter light oil. respectively 3. The lowest temperatures of winter light oil for starting engine were -7.5$^{\circ}C$ for power-tiller. -12.5$^{\circ}C$ for tractor of 38ps, and -17.5$^{\circ}C$ for tractor of 45ps. which were 5~7.5$^{\circ}C$ lower than that of summer light oil. 4. The performance of engine starting and the trouble of fuel supply system at lower temperature were significantly improved by using winter hight oil rather than summer light oil.

Numerical Analysis on Flow Characteristics of Air Starting Motor for Marine Medium-Speed Diesel Engine (선박용 중형디젤엔진 공기시동모터의 유동특성에 관한 수치해석)

  • Yang, Su-Young;Kim, Tae-Hun;Lee, Yeon-Won;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.545-552
    • /
    • 2009
  • The marine medium-speed diesel engines are operated by two methods; one is the electric motors, and the other air starting motors. Even though air starting motor is dependent of the engine types and sizes, it has been widely used in this area due to its simplicity, convenience and reliability. However most of them are currently imported from overseas due to the lack of the cutting-edge technology in terms of design and manufacturing. Therefore, from the point of this view, the air starting motor needs to be produced by our own techniques. The purpose of this paper is to give the designing parameters in order to make a proper "Air Starting Motor" using CFD. The aerodynamic approaches were given to understand the internal flow characteristics of the air starting motor. In addition, we have carried out the effects of tip clearance. In the calculations the tip clearance of air starting motor has been varied between 0% and 5.7% of blade span.

Effects of the Fuel Injection Timing on the Combustion Characteristics in CRDI Diesel Engine (CRDI 디젤엔진의 연료분사기기가 연소특성에 미치는 영향)

  • Kim, J.S.;Kim, K.H.;Lee, H.S.;Lim, S.W.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.10-15
    • /
    • 2011
  • This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.

An Experimental Study on Characteristics of Temperature Separation in a Vortex Tube for Diesel Engine Exhaust Gas (Vortex Tube의 승용 디젤기관 배기가스 온도 분리특성에 관한 연구)

  • Jung, Young-Chul;Choi, Doo-Seuk;Im, Seok-Yeon;Kim, Hong-Ju;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • An object of this study is to confirm the opening amount of the throttle valve that is begun the temperature separation of vortex tube for various engine speed and load condition in a common rail diesel engine. The vortex tube located at downstream of the exhaust manifold is a device separating the incoming exhaust gas to hot and cold stream. To find optimum separation efficiency of vortex tube, the opening amount of throttle valve has been investigated for various engine speed and load conditions. Engine speed was found that the influence of engine speed was dominant compared with that of engine load. As engine speed was increased, the throttle opening amount starting temperature separation was reduced.