• 제목/요약/키워드: Dielectric loss frequency and temperature

검색결과 169건 처리시간 0.026초

테프론의 가열에 의한 C-V 열화 특성에 관한 연구 (A Study on Properties of C-V Degradation due to Heating in Teflon)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제27권11호
    • /
    • pp.730-735
    • /
    • 2014
  • In this study, the temperature characteristics of electrostatic capacity and dielectric loss for the sample of Teflon film which is degradated at the $120^{\circ}C{\sim}200^{\circ}C$ temperature range in the oven for 10 hours has been measured in through the applied frequency range of 0.1 kHz~4,800 kHz at temperature of $50^{\circ}C$, $90^{\circ}C$, $130^{\circ}C$, $170^{\circ}C$. Also, in the same conditions, the frequency characteristics of electrostatic capacity and dielectric loss for the sample of Teflon film has been measured in through the applied temperature range of $30^{\circ}C{\sim}70^{\circ}C$ on setting frequency of 0.1 kHz, 1 kHz, 10 kHz, 100 kHz. The results of this study are as follows. When the frequency range of 0.1 kHz~4,800 kHz applied to the sample of Teflon film, the electrostatic capacity has been measured at the temperature of $50^{\circ}C$, $90^{\circ}C$, $130^{\circ}C$, $170^{\circ}C$. Through this measurement, it found that the electrostatic capacity decreased with increasing temperature. Regarding this result, may be it is because the electromagnetic coupling is degraded by thermal degradation. When the sample of Teflon film heated at $280^{\circ}C$ for 10 hours in oven, the dielectric loss has changed from unstable status to stabilizing status with increasing the degradation temperature in the $120^{\circ}C$, $160^{\circ}C$, $200^{\circ}C$ range. In this measurement, the two spectrums of dielectric loss appeared. It considers that this spectrum of dielectric loss appeared in 300 Hz is caused by the molecular motion of the C-F or OH group. Through this study, It found that the electrostatic capacity decreased with increasing frequency and temperature, and there is no change in dielectric loss, although the frequency increases.

온도 변화에 의한 열전도성 실리콘 고무의 절연 열화 특성 (A Study on Insulation Degradation Properties of Thermal Conductive Silicone Rubber due to Temperature Transition)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제28권7호
    • /
    • pp.456-461
    • /
    • 2015
  • In this study, the frequency properties of electrostatic capacity and dielectric loss for the samples with different types of filler has been measured in through the applied frequency range of 7 kHz ~3,000 kHz at temperature of $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$, $170^{\circ}C$. The results of this study are as follows. When the sample is degradated at the temperature of $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$, $170^{\circ}C$ and the frequency range of 7 kHz ~3,000 kHz is applied, It found that the electrostatic capacity of the sample with Polyimide film is larger than the sample with Grass fiber. It found that the dielectric loss for the sample with Polyimide film is larger than the sample with Grass fiber with increasing frequency and temperature in the $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$, $170^{\circ}C$ range. Also, the dielectric loss decreased with increasing frequency. In case of the sample with Polyimide film, It found that the electrostatic capacity decreased with increasing temperature, and the dielectric loss gradually decreased with increasing frequency.

진공증착법으로 제조된 $\beta$-PVDF 박막의 유전 특성에 미치는 이온의 영향 (The Effect of Ion Contribution to the Dielectric Properties of $\beta$-PVDF Thin Film Fabricated by Vapor Deposition Method)

  • 박수홍;김종택;이덕출
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1007-1013
    • /
    • 1998
  • In this paper, the dielectric properties of fabricated Polyvinylidene fluoride(PVDF, $PVF_2$) thin film with substrate temperature from 30 to at vapor deposition. The dielectric properties of PVDF thin film had been studied in the frequency range from 10Hz to 4MHz at measuring temperature between 20 and $100^{/circ}C$. The anomalous increasing in dielectric constant and dielectric loss at low frequencies and high temperature was described for PVDF thin film containing ion impurities. In particularly, ion mobility of fabricated PVDF thin film at substrate temperature at $30^{/circ}C$ decrease from $2\times10^{-5}\;to\;3.07$\times10^{-7}cm^2/V.s$ On the other hand, ion density increase abruptly from 1.49\times$$10^{13}$ to $1.5\times$10^{16}$cm^{-3}$ In spite of decreasing of ion mobility, dielectric constants and dielectric loss for PVDF thin film increase rapidly with decreasing frequency and high temperature. It was concluded that the dielectric constants and dielectric loss was related to ion density than to ion mobility at low frequency and high temperatures.

  • PDF

주파수 변화에 따른 에폭시 복합체의 유전특성에 관한 연구 (A Study on the Dielectric Properties of Epoxy Composites with Frequency Variation)

  • 김상걸;이동규;안준호;이상극;오현석;박건호;박우현;이기식;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.813-816
    • /
    • 2001
  • In this paper, the dielectric properties of epoxy composites used for transformers are studied. The dielectric permittivity and loss of specimen are measured at the frequency range of 30[Hz]∼1[MHz] about temperature 20[$^{\circ}C$],100[$^{\circ}C$] and 140[$^{\circ}C$] respectively from a series of experiments. When the filler is added, between epoxy and silica is formed interface. Therefore, observed higher values of dielectric permittivity and loss in filled epoxy are attributed to MWS polarization effect. Also, glass transition temperature was shifted to higher temperature and value of dielectric permittivity and loss were decreased due to 2nd curing. Deformation of interfacial state is improved and value of dielectric permittivity and loss were decreased at low frequency region by the surface treatment of fillers with silane coupling agents.

  • PDF

온도 및 주파수 변화에 따른 프린트 배선기판의 유전특성 연구 (A Study on Dielectric Properties of Printed Circuit Board Materials with Variation of Frequency and Temperature)

  • 박종성;김종헌;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.773-777
    • /
    • 1998
  • This paper presents the results of measured permittivity of PCB sheet material in the frequency range of 0.1 ~ 2[㎓] and temperature range of 25~ 85[>$^{\circ}C$]. Microstrip lines with different physical length are implemented to measure the attenuation and phase shift of the signals through these lines. The loss factor of glass-epoxy and teflon could by calculated with the measured dielectric constant and the attenuation. From the experiment, the glass-epoxy was more influenced by temperature and frequency than teflon. The average dielectric constants of glass-epoxy and teflon within the measured frequency range are 4.48 and 2.18, respectively.

  • PDF

동축선로 프로브를 이용한 프린트 배선 회로용 기판 재료의 주파수 및 온도 변화에 따른 유전특성 연구 (A Study on Dielectric Properties of Printed Circuit Board(PCB) Materials with Variation of Frequency and Temperature using Coaxial Air Line Probe)

  • 박종성;김종헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 1998
  • In this paper a probe for the' measurement of dielectric properties of dielectric sheet materials is designed and implemented as a coaxial air line type. Using the broadband impedance method with this measurement probe the dielectric constant and loss tangent of the glass-epoxy and teflon are determined in the frequency range of 0.1 - l.O[GHz] with the temperature variation from $25[^{\circ}C]$ up to $65[^{\circ}C]$. A measured relative dielectric constant of the glass-epoxy is 4.42 and a loss tangents is 0.019 relatively, and the relative dielectric constants of teflon is 2.17 and a loss tangents is 0.002 relatively

  • PDF

온도변화에 따른 에폭시 복합체의 유전특성에 관한 연구 (A Study on the Dielectric Properties of Epoxy Composites due to Temperature Variation)

  • 김상걸;송봉철;정동회;이호식;이원재;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.148-151
    • /
    • 2000
  • In this paper, the dielectric properties of epoxy composites used for transformers are studied. The dielectric permittivity and loss of specimen are measured at the temperature range of 20[$^{\circ}C$]~150[$^{\circ}C$] about frequency 30[Hz], 1[kHZ] and 30[kHz] respectively from a series of experiments. Consequently, observed higher values of dielectric permittivity and loss in filled epoxy are attributed to Maxwell-Wagner Polarization effect. Also, glass transition temperature was shifted to higher temperature and value of dielectric permittivity and loss were decreased due to 2nd curing.

  • PDF

비스페놀-A를 기반으로 제작한 에폭시 복합체의 온도 변화에 따른 유전특성 (Dielectric Properties of Bisphenol-A Based Epoxy Resin Composite with Varying Temperature)

  • 이호식
    • 한국응용과학기술학회지
    • /
    • 제34권1호
    • /
    • pp.25-32
    • /
    • 2017
  • 주파수 (30 ~ 300k Hz)와 온도 범위 ($20{\sim}160^{\circ}C$)가 경화 조건에 따른 에폭시 수지의 전기적 특성 (유전율 및 유전손실)에 미치는 영향을 조사하였다. 유리전이온도(Tg) 이하에서는 주파수와 상관없이 각각 3가지의 시편에서 유전분산 현상이 나타나지 않으며, 유리전이온도(Tg) 이상에서 유전분산 현상이 나타났다.

점도증가에 따른 절연용 실리콘유의 유전손실 (Dielectric loss of silicone oils for insulation due to the increase of viscosity)

  • 이용우;조경순;김왕곤;홍진웅
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권5호
    • /
    • pp.587-593
    • /
    • 1995
  • Silicone oils used insulating substances exhibit the both of organic and inorganic properties, and it has many superior characteristics such as the high thermal resistance and low thermal oxidation level when compared to other insulation oils. In order to investigate the dielectric loss due to the increase of viscosity, silicone oils of viscosity 1, 2, 5[cSt] had been chosen as the specimen and experiment has been performed in the temperature range of -70[.deg. C] - 65[.deg. C] and frequency range of 30 - 1*10$\^$5/[Hz]. As a result, the linear decrease of loss at low frequency region in high temperature was due to the influence of applying frequency, whereas the increase of loss at high frequency region was contributed by electrode's resistance. And increasing viscosity, the activation energy increased from 3.77[kcal/mole] to 7.21[kcal/mole]. The dipole moment of specimen was become clear 1.48 - 2.26[debyel in high temperature region(5 - 65[.deg. C]) and 1.05 - 1.80[debye] in low temperature region (-70 - -25[.deg. C])respectively.

  • PDF

Stabilization of the Perovskite Phase and Electrical Properties of Ferroelectrics in the Pb2(Sc,Nb)O6 System

  • Kim, Yeon Jung
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.224-227
    • /
    • 2015
  • Ferroelectric $Pb_2(Sc,Nb)O_6$ were prepared under two different sintering conditions using the oxide mixing method and the electrical properties were measured. The sintering conditions were $1350^{\circ}C$ for 25 minutes and $1400^{\circ}C$ for 20 minutes. EDX spectroscopy and XRD were used to determine the crystalline characteristic of the $Pb_2(Sc,Nb)O_6$ compositions Pyrochlore phase showed about 2% in all $Pb_2(Sc,Nb)O_6$ specimens. It expands the growth of crystals in samples sintered at $1400^{\circ}C$ than $1350^{\circ}C$, but all samples were the optimal crystallization. The temperature and frequency dependence of the complex dielectric constant and admittance were measured to analyze the electrical properties. The high dielectric constant of the specimens reflects the good stoichiometry and crystallization. The maximum value of the dielectric constant in the two specimens treated with sintering at $1350^{\circ}C$ and $1400^{\circ}C$ were more than 27,000, and the dielectric loss at room temperature is smaller than 0.05. The maximum dielectric constant decreased with increasing frequency, the transition temperature also increased in $Pb_2(Sc,Nb)O_6$ compositions. The admittance and susceptance values reach a peak at all temperatures, and the magnitude of the peak increases with increasing measuring temperature. Strong frequency dependent of maximum admittance, susceptance, dielectric constant and dielectric loss were observed.