• 제목/요약/키워드: Die stress analysis

검색결과 230건 처리시간 0.025초

STD61 열간 금형강의 고온피로거동에 관한 연구 (A Study on the High Temperature Fatigue Behavior of Hot Forging Die STD61 Steel)

  • 여은구;이태문;이용신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.711-714
    • /
    • 2002
  • Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies about brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel at 700 and 900 are carefully examined, as the basic experimental data are used to predict from fatigue life over 700.

  • PDF

열간 금형재의 기계적 성질과 주조금형 피로해석모델 (Mechanical Properties of Hot Working Die Steel and Fatigue Analysis Model of Casting Mold)

  • 여은구;황성식;이용신;곽시영;김정태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 2003
  • Generally, the life of casting mold is limited by fatigue fracture or dimensional inaccuracy originated from wear in high temperature. Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies on brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel are carefully examined between room temperature and 90$0^{\circ}C$, as the basic experimental data are used to predict from fatigue life of casting mold.

  • PDF

냉간단조에서 금형 열박음 영향의 정량적 분석 (Quantitative analysis of effect of shrink fit in cold forging)

  • 이추실;이민철;정동찬;손요헌;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 2009
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, shrink fit, dimension of ring, partition of die inert and clamping force on effective stress and circumferential stress are analyzed.

  • PDF

육각볼트 헤드 단조를 위한 분할금형설계 (A Split Die Design for Forging of Hexagonal Bolt Head)

  • 추연근;조해용
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.91-97
    • /
    • 2020
  • A split-die design for the cold forging of symmetric parts such as those having a hexagonal cross-section is presented in this paper. Parts with a hexagonal cross-section, such as bolt heads and nuts, should be forged with a die that has a hexagonal-shaped hole. A split type die is required to mitigate the buildup of stress concentrations located at the corners of the hexagonal hole. Generally, the insert of a hexagonal die is made by cutting each corner of a cylinder using a hexagonal hole and then combined with the die and shrink-fitted. However, split dies face problems when extruding material at the corners of the hexagonal split die. To address this problem, two types of split dies were evaluated: rounded hexagonal dies and angular hexagonal dies. The effects of the pre-stress ring on the dies were compared and analyzed and results show that using the angular split hexagonal die can extend the lifetime of forging dies.

냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구 (A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging)

  • 이영선;이대근;이정환
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.

인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석 (Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft)

  • 권혁홍;문관진;송승은
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

열간 자유단조 공정시 내부 공극 압착 거동에 관한 연구 (A study on Cavity Closure Behavior During Hot Open Die Forging Process)

  • 권용철;이정환;이승욱;정용수;김남수;이영선
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.293-298
    • /
    • 2007
  • Recently, there is a need to produce a large forged part for the flight, shipping, some energies, and military industries, etc. Therefore, an open die forging technique of cast ingots is required to obtain higher quality of large size forged parts. Cogging process is one of the primary stages in many open die forging processes. In the cogging process prior to some open die forging processes, internal cavities have to be eliminated for defect-free. The present work is concerned with the elimination of the internal cavities in large ingots so as to obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis is performed to investigate the overlap defect of cast ingots during cogging stage. The measured flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}-3D$. The calculated results of cavity closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

플라스틱 파이프 압출시 금형 형상이 다이립 집적에 미치는 영향 (Influence of Die Geometry on Die-tip Buildup in Plastic Extrusion)

  • 서영성;최선웅
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.486-493
    • /
    • 2000
  • Extrusion die-lip buildup has direct and negative impact on the properties of the final product. At the present time there is no absolute method of die-lip prevention. However, a Periodical shut down of extrusion line for the removal has been the general practice throughout the industry in concern. In this study the die-lip buildup was Investigated with a particular attention paid to the influence of die exit geometry and dimensions on the stresses produced at the point of die exit. To demonstrate the relationship between the stress state and the magnitude of the die-lip buildup, a method of virtual manufacturing was performed, assuming elastic-plastic material behavior for the high-density polyethylene under investigation. The overall numerical results suggested that the longer the die-land and/or the smaller the areal reduction of the die would reduce the tendency for the die-lip formation. Similarly, haying a fillet around the circumferential edge of the die exit would be favorable in decreasing the die-lip buildup.

  • PDF

세라믹 금형을 이용한 열간 튜브 압출의 축대칭 유한요소해석 (An Axisymmetric Finite Element Analysis of Hot Tube Extrusion Using Ceramic Dies)

  • 강연식;양동열;정순길;이준근
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.72-80
    • /
    • 1998
  • This study is concerned with the thermo-biscoplastic finite element analysis of hot tube extrusion through square dies with a mandrel. The problem is treated as a non-steady state and the ALE description is used due to abruptly turning flow at the die aperture. Since the contact heat transfer coefficient and the friction factor are required in the analysis experiments are also carried out to determine the values, In order to apply ceramics to an extrusion die the study is focussed on under-standing the characteristics of the process. The simulated results provide the useful informations such as metal flow temperature distribution stress state etc. The elastic analysis of the dies is carried out to obtain the stress state of the ceramic dies.

  • PDF

전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계 (Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure)

  • 김세호
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.