• Title/Summary/Keyword: Die stress analysis

Search Result 230, Processing Time 0.027 seconds

An Axisymmetric Finite Element Analysis of Hot Tube Extrusion for the design of Ceramic Dies (세라믹 금형설계를 위한 열간 튜브 압출의 축대칭 유한요소해석)

  • 강연식;양동열;정순길;이준근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.882-886
    • /
    • 1996
  • The use of ceramics for extrusion dies is limited since the modification of die design is difficult. In order to successfully apply the ceramic dies to extrusion dies, a better understanding of the process should be preceded. This study focuses on understanding the characteristics of the process. In the present study, a hot extrusion of tube with a mandrel is analyzed by ALE finite element method. In order to obtain the stress state of ceraminc dies, the elastic analysis of dies is also carried out.

  • PDF

Theoretical and Experimental Study of the Axisymmetric Fluid Pressure-Driven Hydroforming Process (축대칭 벌징형 하이드로포밍 공정에 대한 이론 및 실험적 연구)

  • Yang, Dong-Yol;Choi, Sun-Jun;Chung, Wan-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.28-38
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-driven hydroforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution. The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold-rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experiment with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.

  • PDF

Prediction Model of Surface Residual Stress for Multi-Pass Drawn High Carbon Steel Wire (고탄소강 다단 신선 와이어의 표면 잔류응력 예측모델)

  • Kim, D.W.;Lee, S.K.;Kim, B.M.;Jung, J.Y.;Ban, D.Y.;Lee, S.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.224-229
    • /
    • 2010
  • During the multi-pass wire drawing process, wires suffer a great amount of plastic deformation that is through the cross-section. This generates tensile residual stress at surface of drawn wires. The generated residual stress on surface is one of the problems for quality of wires so that prediction and reduction of residual stresses is important to avoid unexpected fracture. Therefore, in this study, the effect of process variables such as semi-die angle, bearing length and reduction ratio on the residual stress was evaluated through Finite Element Analysis. Based on the results of the Analysis, a prediction model was established for predicting residual stress on the surface of high carbon steel(AISI1072, AISI1082). To identify the effectiveness of the proposed model, X-ray diffraction is used to measure the residual stresses on the surface. As the result of the comparison between calculated residual stresses and measured residual stresses, the model could be used to predict residual stresses in cold drawn wire.

The Rearch of Stress Route for Concrete Structure using Advanced Progressive Optimization (개선된 점진적 구조 최적화 기법을 이용한 콘크리트 구조물의 응력경로 탐색)

  • Kim, Shi-Hwan;Yoon, Seong-Soo;Park, Jin-Seon;Jeon, Jeong-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.153-163
    • /
    • 2011
  • This research describe improved algorithm that is able to decide terminal criterion of Evolutionary Structural Optimization (ESO), reducing load of calculation to search load path of concrete beam, and apply to agricultural facilities. The ESO method is that make to discrete structure, structural analyze each element stress through FEM. And repeat generation with next material condition to become for most suitable composing. Individual element introduces concept of zero stiffness, but zero stiffness decisions are gone to direction of exclusion. In this stduy, improve algorithm to be convergence by 'Rule of Alive or Die' in arrival because is most suitable. Also, existing terminal criterion lack consistency because that used depend on experience of researcher. This research procedure is fellowed. First, all modulus of elasticity assume a half of elasticity modulus of material, Second, structural analysis by FEM, Third, apply to the remove ratio and restoration ratio for the 'rule of alive or die'. Forth, reconstruct the element and material conditions. And repeat the first to forth process. The terminal time of evolutional procedure is the all elastic modulus of element changed to blank value or elasticity modulus value of original. Therefore, in this study, consist the algorithm for programming, and apply to the agricultural facilities with concrete.

Extrusion Process Analysis of Al/Cu Clad Composite Materials by Finite Element Method (유한요소법을 이용한 Al/Cu 층상복합재료의 압출공정해석)

  • 김정인;강충길;권혁천
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.87-97
    • /
    • 1999
  • A clad material is a different type of the typical composites which are composed of two or more matericals joined at their interface surface. The advantge of cald material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneously. This paper is concerned with the direct and indirect extrusion processes of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copperclad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and mean stress for sheath thicknesses, die exit diameters and die temperatures.

  • PDF

Structure analysis of ultra precision nano-scale machine for mold processing (금형가공을 위한 초정밀 나노가공기의 구조해석)

  • Baek, Seung-Yub;Kim, Seon-Yong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • As various manufacturing technology of optical glass is developed, the aspheric lenses are supplied to many fields. Electronic or measuring instruments equipped with aspheric lens have recently been used since aspheric lens is more effective than spheric one. However, it is still difficult manufacture glass lens because of high cost and the short life of core. The demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. For the mass production of aspheric lens, specific molds with precisely machined cores should be prepared. In order to obtain competitiveness in the field of industrial manufacturing, a reduction in the development period for the batch machining of products is required. It is essential to analyze the stress distribution and deformations of machining system which is used for manufacturing the aspheric lens using FEM software ANSYS. Finite element simulations have been performed in order to study the influence of machining system which is developed in this study on structures. It is very important to understand the structural behavior of machining system. This paper investigated the static analysis and dynamic analysis of machining system for aspheric lens to predict the damage due to loading.

  • PDF

A study of model to improve the accuracy of Springback prediction on sheet metal forming (판재 성형품의 탄성회복예측 정밀도 향상을 위한 모델 연구)

  • Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.47-52
    • /
    • 2004
  • Springback comes from the release of residual stress after forming. The control of phenomenon is especially important in the sheet metal forming since there are no other practical methods available to correct the dimensional inaccuracy from springback. Therefore the accurate predication before the die machining has been a long goal in the Held of sheet metal forming. The aim of the present study is to enhance the prediction capability of finite element(FE) analysis for the springback phenomenon. For this purpose FE analysis for V-bending has been carried out with the commercial programs, LS-DYNA. The FE analysis results have been validated through the comparison of experimental. The experimental results measured directly by the strain gauge have given the confidence to FEA.

  • PDF

An analysis on the surface roughness and residual stress of SUS-304 using abrasive film polishing (Abrasive Film Polishing을 이용한 SUS-304의 표면거칠기·잔류응력 분석)

  • Shin, Bong-Cheol;Kim, Byung-Chan;Lim, Dong-Wook;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.16-21
    • /
    • 2018
  • Recently, as the demand for high-precision parts increases due to industrial development, a machine tool system for ultra-precision machining and polishing has been actively developed. As a result, there is an increasing demand for ultra-precision surface roughness along with dimensional processing. However, due to the increase in processing time due to the demand for ultra-precise surfaces and enormous facility investment, it is difficult to secure competitiveness. The polishing process using the abrasive film in super precision machining has been applied to machines, electronic devices, aerospace, and medical fields. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Also, application of industrial field is increasing due to advantages such as low noise and low dust. Recently, researches on stainless steel having strong resistance to corrosion, heat resistance, heat resistance, toughness and weldability have been actively conducted with respect to the nuclear energy industry or marine development. Therefore, in this study, surface roughness and residual stress were measured after SUS304 polishing using dynamic analysis of film polishing apparatus and polishing film.

Assessment of Stability of Stability of Hydraulic Breaker Cylinder and Piston through Thermal-Structural coupled Field Analysis by Finite Element Method (유한요소법을 이용한 유압브레이커 Cylinder와 Piston의 열-구조 연성해석을 통한 안정성 평가)

  • Lim, Dong-Wook;Park, Yoon-Soo;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2018
  • This study proves the causes of cylinder and piston jam by scratches which is the fatal problem of hydraulic breaker through the thermal analysis and thermal-structural coupled field analysis. The trouble from the scratch is a complex problem which can be caused by manufacturing process (this is an internal factor) and the users mistake or contamination in the hydraulic circuit (these are an external factor). Hence, it's not easy to investigate the causes, also hard to prevent the recurrence. In this reason, hydraulic breaker manufacturers are trying to improve the manufacturing process such as machining, heat treatment, grinding, cleaning, also to prevent the contamination in hydraulic circuit and to remove the remains. It's being managed thoroughly by manufacturers. This study shows the effect of the temperature rise by the frictional heat generated when the piston hits the tool on the hydraulic oil while the hydraulic breaker is operating, also the temperature distribution when it starts to affect main components of hydraulic breaker. The stress and the amount of deformation also could be found through thermal-structural coupled field analysis. It proved that the stress and deformation are proportionally increased according to the temperature rise in hit area, and it affects the cylinder and the viscosity of hydraulic oil inside the cylinder when it heats up beyond the certain temperature.

Determination of Forming Conditions of Fitting Pipes using Press Forming Processes (프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정)

  • Kim, Tae-Gual;Park, Young-Chul;Park, Kyoung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.