• Title/Summary/Keyword: Die steel

Search Result 441, Processing Time 0.023 seconds

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

An Analysis Finite Element for Element for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel (I) - Analysis of temperature distribution - (탄소강의 담금질 처리과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(I) - 온도분포의 해석 -)

  • Kim, Ok-Sam;Cho, Eui-Il;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • Temperature distribution, transformation and residual stresses generated during the quenching process of carbon steel. It follows many difficulties in the analytical considerations on those quenching process because of the coupling effects on temperature and metallic structures. In this paper one of the basic study on the quenching stresses was carried out for the case of the round steel bar specimen(SM45C) with 40mm both in its diameter and length. The temperature distributions considering strain hysteresis were numerically calculated by finite element technique. In calculating the transient temperature field, the heat flux between water and rod surface was determined from the heat transfer coefficient. The gradient of temperature is almost same to geometric of specimen. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the specimen.

  • PDF

Change in Springback Tendency during Forming of a Hat-type Product with High Strength Steel Using a Digital Servo Press (디지털 서보 프레스를 이용한 고강도강 성형제품의 스프링백 경향 변화)

  • Kang, K.H.;Kim, S.H.;Ro, H.C.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • In the current study, reduction of springback is quantified and the reasons for the reduction are investigated. The testing involved a digital servo motion applied to a U-draw bending to produce a hat-type product from high strength steels such as DP780 and DP980. The change in springback is compared between the constant speed motion and three kinds of servocontrolled motions during forming experiments. In order to predict the springback for the servo-controlled tool motion, a finite element method was utilized for the springback analysis considering a kinematic hardening model for the steel. The comparison of springback between the analysis and the experiments shows that they have similar tendencies. Also, the analysis results indicate that the springback reduction is greatly influenced by a decrease in the friction coefficient, which originates from the contact and detach phenomena between the tooling and the blank during the up-and-down motion of the upper die following the servo-controlled motion.

A Study of Optimal Design for Mg Armrest Frame by using Response Surface Method (반응표면법을 이용한 마그네슘 암레스트 프레임의 최적설계 연구)

  • Kim, Eun-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.797-804
    • /
    • 2012
  • Magnesium has a long tradition of use as a lightweight material in the field of automotive industry. This paper presents the design optimization process of Mg armrest frame to minimize its weight by replacing the steel frame. formerly, the analysis of steel armrest frame was peformed to determine the design specifications for Mg armrest frame. The initial design of Mg armrest frame was carried out by topological optimization technique. After six types of design variables and four types of response variables were defined, DOE(Design of Experiment) and RSM (Response Surface Method) were applied in order to measure sensitivity of design variables and realize optimization through regression model. After design optimization, the weight of the optimized Mg armrest frame was reduced by about 3% compared to the initial design of the Mg frame and was decreased by 41.7% in comparison with that of the steel frame. Some prototypical armrest frames were also made by die casting process and tested. The results were satisfying for its design specifications.

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.601-606
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are few studies for forming process. The forming technology considered in this paper is form type process, which has many advantages for forming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

Springback Control in the Forming Processes for High-Strength Steel Sheets (고강도 강판 성형 공정의 스프링백 제어)

  • Yang WooYul;Lee SeungYeol;Keum YoungTag;Hwang JinYoung;Yoon ChiSang;Shin ChirlSoo;Cho WonSuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.35-40
    • /
    • 2003
  • In order to develope springback control technology for high-strength steel sheets, some studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to know the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type, high strength sheet panels.

  • PDF

Prediction Model of Surface Residual Stress for Multi-Pass Drawn High Carbon Steel Wire (고탄소강 다단 신선 와이어의 표면 잔류응력 예측모델)

  • Kim, D.W.;Lee, S.K.;Kim, B.M.;Jung, J.Y.;Ban, D.Y.;Lee, S.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.224-229
    • /
    • 2010
  • During the multi-pass wire drawing process, wires suffer a great amount of plastic deformation that is through the cross-section. This generates tensile residual stress at surface of drawn wires. The generated residual stress on surface is one of the problems for quality of wires so that prediction and reduction of residual stresses is important to avoid unexpected fracture. Therefore, in this study, the effect of process variables such as semi-die angle, bearing length and reduction ratio on the residual stress was evaluated through Finite Element Analysis. Based on the results of the Analysis, a prediction model was established for predicting residual stress on the surface of high carbon steel(AISI1072, AISI1082). To identify the effectiveness of the proposed model, X-ray diffraction is used to measure the residual stresses on the surface. As the result of the comparison between calculated residual stresses and measured residual stresses, the model could be used to predict residual stresses in cold drawn wire.

Carbide Behavior in STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 온도에 따른 탄화물 거동)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2011
  • Carbide precipitation and dissolution behavior at various temperatures during heat treatment has been studied in STD11 cold working die steel through confocal scanning laser microscopy; dilatometry; and X-ray diffraction analysis. The equilibrium phase diagram and phase fractions with temperature were calculated using a FactSage program. Confocal laser microscopic observation revealed that ${\alpha}$ to ${\gamma}$ transformation temperature is near $800^{\circ}C$; M7C3 carbides melt at $1245^{\circ}C$; and the melting temperature of STD11 is near $1370^{\circ}C$. XRD results indicated that the M23C6 carbides dissolve in the matrix if austenitized at over $1030^{\circ}C$; while the M7C3 carbides remain up to $1200^{\circ}C$ although their amount decreases. The calculated equilibrium phase diagram showed good agreement with experimental results on carbide dissolution and phase transformation temperatures.

Evaluation of Harmless Crack Size of SCM822H Steel according to Shot Ball Size (쇼트 볼의 크기에 따르는 SCM822H 강의 무해화 균열크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.725-731
    • /
    • 2023
  • In this study, the harmless crack size was evaluated using carburized, quenched-tempered SCM822H steel. The possibility of detecting cracks that reduce the fatigue limit by non-destructive inspection was evaluated. The conclusions obtained are as follows. The retained austenite of surface was reduced by SP. About 35% and 65% of the retained austenite on the surface were transformed into strain-induced martensite, increasing the hardness by 79HV and 122HV over the as-received material. The maximum compressive residual stresses introduced on the surfaces were -695 MPa and -688 MPa, respectively. The fatigue limit increased by 1.48 times and 1.67 times, respectively, compared to the as-received material. The harmless crack size of SP specimen was determined differently depending on the shot ball size.

A study on micro-deburring of thin magnesium plate for application of electronic products (마그네슘 박판의 전자부품 적용을 위한 마이크로 디버링에 관한 연구)

  • Lee, Jung-In;Kim, Tae-Wan;Kwak, Jae-Seob;Jung, Young-Deug
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.70-73
    • /
    • 2012
  • Drill process is usually used to manufacture a industry about processing, Therefore, the burr problem is very significant, The burrs took place when drill process. And then, sometimes, the burrs are often caused of some problems during automatic such as no good quality products and having good surface roughness products. And also, this paper had some experiments using magnesium. Specially, the magnesium is one of the non-ferromagnetic materials. Magnesium has attracted a lot of interest for using the industry. They offer a possible alternative to steel and aluminum in automotive and aero industries to satisfy the lightweight requirement. also, magnesium has good specific strength and absorbs vibration in occurring working process. So, it has good quality of product processing. And then, it is one of the lightest materials being used to electronic product's cases and automotive because of lightweight and miniaturization. But this material has not widely used all of the industry due to its natural property. If the magnesium is contacted water, it will cause the exploration. But, nowadays many of people study magnesium to safe their experiment and to widely use this industry.

  • PDF