• 제목/요약/키워드: Die and Mold Parts

검색결과 179건 처리시간 0.026초

엘보어 쉘주형 금형 개발에 관한 연구 (A Study on Development of the Flask-Molds for Manufacturing of the Elbow Shape Shell Molds)

  • 최재훈;박종연
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.45-49
    • /
    • 2013
  • Since the shell-molds are used to make casting the metal parts for the automobile industry, the quality may well be inconsistent with the lower productivity, increasing the cost of the end products. The primary elbow design shell molded steel castings being produced through extrusion process has $180^{\varnothing}$ O.D., $150^{\varnothing}$ I.D., 14mm thickness and 400mm length, while being processed onto the left side of the tubing. The primary cause for the poor processing is the uneven manual shell molding. If the manual shell molds should be produced to have even quality, they would not be processed for tube linking. The purpose of this study was to develop the flask-molds for manufacturing of the shell molds to ensure mass-production, consistent quality, ommission of processing and comfortable working environment. For this purpose, four flask-molds were produced and thereby, four shell molds were assembled. In particular, the shell molds for processing were formed of the fine coated sand to be blown. As a result, productivity increased about three times, while a consistent quality was ensured. Furthermore, the tubes could be linked with each other without being processed, while pallets could be stacked, stored, transported and managed more easily. In a nut-shell, the molding theory could be applied more effectively. However, it is conceived that this study should be followed up by future studies which will research into reliability and endurability of the end products.

  • PDF

CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각 (Rapid cooling of injection mold for high-curvature parts using CO2 cooling module)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

부품 라이브러리 정보의 자동 통합을 위한 메타 온톨로지 (A Meta-Ontology for Automated Information Integration of Parts Libraries)

  • 조준면;한순흥;김현
    • 한국CDE학회논문집
    • /
    • 제11권4호
    • /
    • pp.273-288
    • /
    • 2006
  • Information integration of heterogeneous digital parts libraries or electronic pars catalogs is one of issues in B2B procurements. We need to provide an integrated view for multiple information sources. Utilization of ontologies as the metadata descriptions of the information sources can provide an integrated view. However, in order to integrate independently developed ontologies, the mismatches among them should be resolved. In this paper, we propose an ontology of meta-concepts, i.e. meta-ontology. The meta-concepts play the role of vocabulary to describe the parts library ontologies and provide well-established ontological semantics that helps the ontology modelers to consistently identify parts library concepts and systematically structure them. Consequently, the meta-ontology reduces the differences in the way the parts knowledge is interpreted and ensures the mismatches are confined to manageable mis matches, so that a software program can merge automatically. Modeling ontologies of mold and die parts libraries for B2B e-commerce is taken as an example to show how to use the meta-ontology. We also discuss how a parts library mediation system can automatically merge the well-structured parts library ontologies.

마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동 (Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM)

  • 유우경;최준필;이재성
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

사출성형 공정에서 젯팅 현상에 관한 고찰 (A Study on the Jetting Phenomena in Injection Molding Process)

  • 류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

프로엔지니어(Pro/E) 기반 금형설계 지원 소프트웨어 툴 개발 (Development of A Software Tool for Supporting Metal Mold Design Based on The Pro/E CAD System)

  • 유호영
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1014-1020
    • /
    • 2012
  • 본 논문은 3D 캐드모델을 기반으로 작업자의 수작업 및 설계오류를 최소화하는 금형설계 지원 툴 개발에 초점을 맞춘다. 금형설계 지원범위는 자동차 산업의 프레스 금형설계 공정에서 필수 요소인 선직 곡면 생성 및 옵셋, 패딩력 자동산출, 수정사항을 반영하는 재료표 자동출력, 홀 가공데이터 자동 산출, 원소재 크기 출력 및 검증 등 이다. 개발한 시스템을 주요 범용 3D 모델러 중 하나인 프로엔지니어의 확장 메뉴형태로 탑재하기 위하여 프로엔지니어 API와 Visual C++를 사용하여 개발하였다.

급속광조형 마스터 모델을 이용한 제품 및 간이 금형 제작 (Fabrication of Mold and Part by Using SLA Master Models)

  • 박문선;김대환;강범수
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.7-13
    • /
    • 1999
  • The potential for growth and the future impact of Rapid Prototyping that it will have on the product development cycle are enormous. Since making tools, precedes making parts, Rapid Tooling becomes widely used in automobile, aerospace, electronic, and other industries. In this study, master models formed by Rapid Prototyping of Stereolithography have been applied for vacuum casting to obtain silicone patterns which have transformed into epoxy models. The epoxy models have been measured to check dimension errors, and tested their functions. These checking and measurement have provided information on plastic injection possibilities and data for die design, Temporary die making with the materials of Aluminum/Epoxy and powder injection metal (PIM) has also been discussed in terms of hardness, surface roughness, and SEM microstructures.

  • PDF

초소형 금형소재의 기계적 특성평가 (Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies)

  • 강재훈;이현용;이낙규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF

광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구 (A study on measurement and compensation of automobile door gap using optical triangulation algorithm)

  • 강동성;이정우;고강호;김태민;박규백;박정래;김지훈;최두선;임동욱
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

평면배열 커넥터 터미널 핀에 오목형상 부여가 접압력 향상에 미치는 영향에 관한 연구 (A Study on the Effects of Concave Shaping in Improving Contract Pressure for Planar Array Connector Terminal Pins)

  • 전용준;신광호;허영무
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.36-40
    • /
    • 2016
  • Connectors transmit electric signals to different parts in compact mobile display products. As products that apply this have become lightweight and smaller in size, there are growing demands for smaller and more integrated connectors, which are internal parts of the products. As a measure to address these demands, there is the planar array connector that minimizes the part by arranging the single-direction BTB connectors to two directions. As connectors become smaller in size and more highly integrated, maintaining intensity to prevent defects during impact and maintaining adhesive force to smoothly transmit electric signals are growing in importance. Thus, in order to identify the impact of concave shaping on improving adhesive power in connector terminal pins as a method to increase the connecting power of planar array connector terminal pins, this study predicted and examined the concave shaping method, number of concave shapes, and the adhesive power according to the size of the concave shape through CAE. For concave shaping, the model that added concave shaping towards the lower part of the connector terminal pin and added spokes for the area pressed down by the concave shaping was 0.74 N, showing increased adhesive force compared to existing models. Furthermore, when applying two concave shaping, rather than just one, there was a tendency for adhesive force to increase. In the case of adhesive power trends according to the size of the concave shaping, adhesive power increased and the width of the concave shape decreased, and the biggest adhesive force trends were shown when the concave shaping depth was 0.01mm.