• 제목/요약/키워드: Die Roll

검색결과 83건 처리시간 0.021초

펠렛밀과 수분함량이 이탈리안 라이그라스 펠렛의 물리적 특성 및 화학적 성상에 미치는 영향 (Effect of the Moisture Content and Pellet Mill Type on the Physical and Chemical Characteristics of Italian ryegrass Pellet)

  • 문병헌;신종서;박형수;박병기;김종근
    • 한국초지조사료학회지
    • /
    • 제36권4호
    • /
    • pp.271-279
    • /
    • 2016
  • 본 연구는 IRG의 사료 가치 및 보관성 향상을 목적으로 소형 펠렛밀의 동력 구동방식 및 함수율이 IRG 펠렛의 성형 특성 및 품질에 미치는 영향을 규명하기 위해 실시되었다. IRG의 펠렛 형성은 재료의 함수율에 큰 영향을 받았다(p<0.05). 펠렛밀의 종류별로 약간의 차이는 있지만, 함수율 25% 조건이 외관, 부하량 및 온도 변화를 고려했을 때 IRG 펠렛 성형에 가장 적합한 것으로 나타났다. 펠렛의 경도는 펠렛밀의 종류에 관계없이 함수율이 높을수록 낮아지는 경향을 보였다. 15~25% 조건의 함수율이 내구도에 미치는 영향은 적었지만, 함수율 25% 조건에 비해 30% 조건에서는 내구도가 급격히 떨어지는 결과를 보였다 (p<0.05). 펠렛밀의 종류와 함수율에 관계없이 IRG 펠렛 성형전에 비해 성형 후에 건물 함량이 높아졌으며(p<0.05), 펠렛 성형과정에서 발생되는 압축열과 재료의 급격한 수분 손실로 인해 총 세균수는 크게 감소되는 결과를 보였다. 따라서 본 연구의 결과에서 IRG 펠렛 형성에 바람직한 함수율은 25%로 나타났으며, 원형 펠렛밀 보다는 수평형 펠렛밀 특히, roller 구동의 수평형 펠렛밀이 IRG 펠렛 형성에 유리한 것으로 판단된다. 또한 IRG에 대한 펠렛 성형은 IRG의 사료 가치 및 장기 보관성 향상에 긍정적인 방법인 것으로 사료된다.

직관적 제어가 가능한 드론과 컨트롤러 개발 (Development of an intuitive motion-based drone controller)

  • 석정환;한희정;백준혁;장원주;김헌
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.41-45
    • /
    • 2017
  • Drones can be manipulated in a variety of ways. One of the most common controller is joystick method. But joystick controller uses both hands and takes a long time to learn. Particularly, in the case of 8-character flight, it is necessary to use both front and rear flight (pitch), left and right flight (Roll), and body rotation (Yaw). Joystick controller has limitations to intuitively control it. In particular, when the main body rotates, the viewpoint of the forward direction is changed between the drones and the user, thereby causing a mental rotation problem in which the user must control the rotating state of the drones. Therefore, we developed a motion matching controller that matches the motion of the drones and the controller. That is, the movement of the drone and the movement of the controller are the same. In this study, we used a gyro sensor and an acceleration sensor to map the controller's forward / backward, left / right and body rotation movements to drone's forward / backward, left / right, and rotational flight motion. The motor output is controlled by the throttle dial at the center of the controller. As the motions coincide with each other, it is expected that the first drone operator will be able to control more intuitively than the joystick manipulator with less learning.

대칭구조 철심형 리니어모터 이송계에서의 코깅현상에 관한 연구 (Investigation of Cogging Effect in Bisymmetric Dual Iron Core Linear Motor Stage)

  • 오정석;박천홍
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents bisymmetric dual iron core lineal motor stage for heavy-duty high precision applications such as large area micro-grooving machines or high precision roll die machines. In this stage, two iron core linear motors are installed in laterally symmetric way to cancel out the attractive forces. Main focus was given to analyzing the effect of cogging force and moment for two different layouts, which are symmetric and half-pitch shifted ones. Experimental results showed that the symmetric layout is more adequate for high precision applications because of its clear moment cancellation effect. It was also verified that the effect of the residual cogging moment can be suppressed further by increasing the bearing stiffness. One problem of the symmetric layout is added cogging force which hinders smooth motion, but its effect was relatively small compared with that of moment cancellation.

Core-shell 구조를 지니는 하모닉 분말의 성형거동 분석 (Effect of Core-Shell Structure on Compaction Behavior of Harmonic Powder)

  • 주수현;박효욱;강수영;이언식;강희수;김형섭
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are $34.3{\mu}m$ and $3.2{\mu}m$, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.

파인블랭킹 공정 시 클리어런스 및 V링 형상의 영향에 관한 연구 (A Study on the Effect of Clearance and V-Ring Shape in a Fine Blanking Process)

  • 김형락;박종연;김형종
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.29-35
    • /
    • 2004
  • Fine blanking can be considered as a manufacturing process capable of producing sheet metal parts with completely smooth edges that may be hardly obtained by conventional shear-cutting procedures. This fact, together with the considerable economic advantages offered by this process, has been responsible for the rapid acceptance of fine blanking throughout the manufacturing industry all over the world, and the discovery of many new applications. This study was performed to investigate the effect of clearance and V-ring shape on the quality of sheared surface in a fine blanking process. The critical value needed to apply the normalized Cockcroft-Latham fracture criterion to the simulation of fine blanking is obtained by correlating the result of finite element analysis and that of experiment for the uniaxial tensile test. From finite element analysis of an axisymmetric fine blanking process, it has been found that punch load, die-roll depth, burnish zone size and shape of sheared surface are considerably influenced by clearance and V-ring shape.

  • PDF

니켈합금 Alloy42를 사용하는 리드프레임의 블랭킹 특성에 관한 기초연구 (A Study on the Characteristics for the Blanking of Lead Frame with the nickel alloy Alloy42)

  • 반갑수;서의권;이광호;모창기
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.87-93
    • /
    • 2004
  • An experimental is carried out to investigate the characteristics of blanking for nickel alloy Alloy42 (t=0.203mm), a kind of IC lead frame material. By varying clearance between die and punch the shapes of shear profile are examined. Finite element analysis with element deletion algorithm for ductile fracture mode is also carried out to study the effect of clearance theoretically and to compare with experimental results. The rectangular shape specimen with four different comer radius is used to study the characteristics of blanking for straight side and comer region simultaneously. As the result the ratios measured k(m experiment of roll over, burnish and fracture zone based on initial blank thickness are compared with those of FE analysis. Both experiment and FE analysis show that the amount of mil over and fracture is increased as the clearance increases. When the radius of comer is less than thickness of blank it has been found that larger clearance is required than that of straight region in order to maintain same quality of shear profile at the comer region.

프레스-브레이킹 굽힘 공정을 이용한 SAW 후육강관의 외경 예측을 위한 해석적 연구 (Numerical Prediction of the Outer Diameter for SAW Pipes Formed by Press-Brake Bending)

  • 박기범;강병권;강범수;구태완
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.116-123
    • /
    • 2016
  • Press-brake bending is used to shape flat and thick plates into a targeted circular configuration without excessive localized thinning or thickening. A brake bending press called 'a knife press bending apparatus' has been widely adopted to manufacture thick, large and long pipe from initially thick plate. Submerged Arc Welded (SAW) pipes are also produced by employing press-brake bending. These pipes are mainly used for oil, natural gas and water pipelines. The principal process variables for press-brake bending can be summarized as stroke of the press-brake knife, the distance between both roll in the lower die, and the feeding length of the plate. Many combinations of these process variables are available, thus various pipe diameters can be realized. In the current study, a series of repetitive numerical simulations by feeding a thick plate with initial thickness of 25.4mm were conducted with the consideration of elastic recovery. Furthermore, an index for SAW pipe production is proposed which can be widely used in industry.

The effect of mechanical working on processing the Bi-2223/Ag tapes using PIT method

  • Oh, S.S.;Ha, D.W.;Kim, S.C.;Bae, S.W.;Kwon, Y.K.;Ryu, K.S.;Ha, H.S.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.276-279
    • /
    • 2000
  • When high temperature superconducting tapes is fabricated using the PIT (Powder In Tube) method, the length of HTS tapes is increased more than 500 ${\sim}$ 1,000 times of initial powder packed billet. On mechanical processing, heterogeneous properties between the ceramic superconducting core and Ag/Ag alloy sheath occur the non-uniformity deformation as like sausaging that deteriorate the critical current properties of HTS tapes. In this study, we investigated the workability of Bi-2223/Ag/Ag alloy sheath tapes fabricated by the PIT method involving a number of different mechanical processes, multi drawing and rolling. In order to obtain the high critical current density and high uniformity of Bi-2223/Ag sheath tapes, the influences of powder packing density, drawing die angle and rolling parameters were studied. We found that the roll diameter is an important variable in the rolling process, as critical current of tapes rolled using 250 mm rolls was higher than that using 150 mm rolls.

  • PDF

자동차용 고정밀 시트 리클라이너의 기어성형 공정에 관한 연구 (A Study on Gear Forming Process for High Precision Automotive Seat Recliner)

  • 강길석;박민제;장명진;김병민;고대철
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.268-274
    • /
    • 2016
  • In the automotive seat industry, the use of a fine blanking press is important for manufacturing of high precision products. Among them, a gear part which is a main component of an automotive seat recliner is generally manufactured by fine blanking press. However, the use of conventional mechanical press has been increasing in manufacture of gear part because of low productivity of fine blanking press. In this study, new forming process is suggested to fabricate the gear part with high precision by using mechanical press. The effect of flow restriction die (FRD) which has the restriction of blank edge on dimensional accuracy is investigated by FE-analysis. FE-analysis results for different conditions of FRD indicated that FRD has high dimensional accuracy with the lowest roll-over and the highest perpendicularity of gear part. After application to fabrication of the gear part using mechanical press, the measured dimensional characteristic was compared with the required specification of final product. In addition, results of the performance test showed that the product fabricated by developed process satisfied the required strength and durability. The results show that the suggested forming process by using FRD and mechanical press can replace fine blanking on the viewpoint of dimensional accuracy and productivity.

다구찌 직교배열을 이용한 트레일링 암 튜브 벤딩 공정 변수 최적화 (Optimization of the Tube Bending Process of Taguchi's Orthogonal Matrix)

  • 윤철호;채명수;문기준;김영석
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.67-72
    • /
    • 2009
  • This paper covers finite element simulations to evaluate tube bending process of auto chassis component i.e. trailing-arm product. The rear of the auto chassis structure is primarily composed of CTBA and trailing-arm. When a car rolls into a corner, the trailing arm reacts to roll in the same degree as the car body. During the bending process of trailing arm the tube undergoes significant deformation. Thus forming defects such as excessive thinning and flattening of the tube will be formed in the outside of the tube. In this paper, we analyzed the effect of process parameters in rotary draw bending process and searched the optimized combination of process parameters using orthogonal arrays method to minimize the forming defects. In this process we analyzed several parameters which are displacement of pressure die, boosting force, initial position of mandrel bar, dimensions of mandrel in regarding to the thinning and flattening of the tube.