• Title/Summary/Keyword: Die Quenching

Search Result 43, Processing Time 0.018 seconds

The Effect of Si Content on Important Properties of A Mo and V Free Low Alloy Cast Steel for The Insert of Cold Pressing Die (냉간 인서트 금형용 Mo, V 무첨가 저합금 주강의 주요 성질에 미치는 Si함량의 영향)

  • Shin, Je-Sik;Kim, Bong-Whan;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.70-77
    • /
    • 2009
  • The aim of this study was to develop a Mo and V free low alloy cast steel materials, enabling the significant cost- and time-savings in manufacturing and maintaining the insert of cold pressing die without impairment of the important properties. For this purpose, the effects of Si content on combinations of important properties such as hardness, hardenability, and weldability, and strength were systematically investigated. In order to evaluate the applicability as the insert of cold pressing die, the mechanical properties were measured after spheroidization annealing, quenching and tempering, and flame hardening heat treatments, respectively. After the Q/T and F.H. treatments, the developed 0.8${\sim}$1.6%Si containing Mo and V free low alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for automobile cold pressing die insert.

Microstructure of Tool Steel Castings for Cold-Work Die Inserts (냉간금형 인서트(insert)용 주강의 미세조직)

  • Kang, Jun-Yun;Park, Jun-Young;Kim, Hoyoung;Kim, Byunghwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.197-206
    • /
    • 2017
  • The microstructure of a high-carbon and high-chromium cast steel (HK700) for cold-work die inserts was analyzed by advanced scanning electron microscopy. A continuous network of primary $M_7C_3$ carbide was developed among austenitic matrix after casting. A small amount of $M_2C$ was added to the carbide network owing to the enrichment of Mo and W during the solidification. After quenching in which the austenitization was performed at $1030^{\circ}C$ and double tempering at $520^{\circ}C$, the network structure of $M_7C_3$ was preserved while most of the matrix was transformed to martensite because of additional carbide precipitation. The $M_2C$ in the as-cast microstructure was also transformed to $M_6C$ due to its instability. The continuous network of coarse carbides owing to the absence of hot-working had little influence on the hardness after quenching and tempering, whereas it resulted in severe brittleness upon flexural loading.

A Study on the Properties of Laser-Welded Boron Steel for Hot Stamping According to the Heat-Treatment Conditions (핫스탬핑용 보론 강판의 레이저 용접부에 대한 열처리 조건에 따른 특성 연구)

  • Hwang, Seok-Hwan;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.319-324
    • /
    • 2012
  • The hot-stamping technique is a forming method for manufacturing high-strength parts, in which the part is cooled rapidly after press forming above the austenite transformation temperature. Boron steel, which contains a very small amount of boron, is one of the materials used for hot stamping. The purpose of this study is to investigate the microstructure and mechanical properties according to the heat-treatment conditions. Die-quenching from various temperatures was conducted for different elapsed heat-treatment times. Laser-welded boron steel after quenching has a tensile strength of 1454 MPa and an elongation of 6 %. It has 94 % of the tensile strength of the base metal (1522 MPa). These properties can provide practical information for the use of boron steels for hot stamping.

Mechanical Properties and Formability of TWB Boron Steel (TWB 보론강의 기계적 특성 및 성형성)

  • Nam, K.W.;Hwang, S.H.;Kim, D.Y.;Lee, M.Y.;Lee, S.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1221-1226
    • /
    • 2012
  • The hot-stamping technique is a forming method used for manufacturing high-strength parts, in which a part is cooled rapidly after press forming above the austenite transformation temperature. Boron steel, which contains a very small amount of boron, is one of the materials used for hot stamping. The purpose of this study is to investigate the mechanical properties of boron steel according to the heat-treatment conditions and the formability by using an Erichsen cupping test. Die quenching from various temperatures was conducted for different elapsed heat-treatment times. Laser-welded boron steel after quenching at 1173 K-0 s has a tensile strength of 1203 MPa. This is 79% of the tensile strength of the base metal (1522 MPa). The formability of boron steel was not significantly different from that at the mold temperature. However, it decreased with increasing forming speed. These properties provide practical information for the use of boron steels for hot stamping.

Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process (열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구)

  • K. J. Park;J. M. Park;J. Y. Kong;J. Y. Kim;S. C. Yoon;J. S. Hyun;Y. D. Jung
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

Development of Electrode Guide of Super-drill EDM and Electrical Discharge Machining of Small Hole for High Precision Semiconductor Die (초정밀 반도체 금형 제작을 위한 슈퍼드릴 방전가공기 전극가이드 개발과 미세홀 방전가공)

  • Park, Chan-Hae;Kim, Jong-Up;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though very hard materials and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM process is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods. In this experimental thesis, the super EDM drilling was developed for high precision semiconductor die steel and for minimization of leadframe width. It was possible to development of EDM drilling machine for high precision semiconductor die with the electrode guide and its modelling and stress analysis. The development of electrode with the copper pipe type was conducted to drill the hole from the diameter of 0.1mm to 3.0mm with the error of from 0.02mm to 0.12mm. From the SEM and EDX analysis, the entrance of the EDM drill was found the resolidification of not only the component of tungsten but also the component of copper.

  • PDF

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(I) - From Austenite to Pearlite - (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소해석(I) -오스테나이트에서 퍼얼라이트로의 변태-)

  • Kim, Ok-Sam;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.233-243
    • /
    • 1994
  • Constitutive relation of thermoelasto-plastic material undergoing phase transformation during quenching process were developed on the basic of continuum thermodynamics. The metallic structure, temperature and residual stresses distributions were numerically calculated by the finite element technique. The metallic structure were defined by transformation from austenite to pearlite and characterized as a fuction of thermal history and mixture rule of phase. On the distribution of thermal stress along the radial direction, axial and tangential stresses are compressive in the surface, and tential in the inner part. Radial stress is tensile in the whole body. The reversion of residual stress takes plase at 11.5~15.5mm from the center.

  • PDF

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(II) -From Austenite to Martensite- (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소 해석(II) -오오스테나이트에서 마르텐사이트로의 변태-)

  • Kim, O.S.;Song, G.H.;Koo, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.12-23
    • /
    • 1995
  • In this a set of constitutive equation relevant to the analysis of thermo-elasto-plastic materials with phase transformation during quenching process was presented on the basis of continuum thermo-dynamic. In calculating the transient thermal stresses, temperature between coolant and specimen(SM45C) surface was determined from the heat transfer coefficient. A calculation was made for specimen with 40mm in diameter quenched in coolant from $820^{\circ}C$ and the results are as follow. Stresses at starting point of transformation always show the maximum tensile value. Reverse of stresses takes place after completion of transformation of inner part at specimen.

  • PDF

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF