• Title/Summary/Keyword: Die Materials

Search Result 1,278, Processing Time 0.028 seconds

Densification Behavior of Dissimilar Material Powder during Die Compaction (금형압축 하에서 구리/철 이종재료 분말의 치밀화 거동)

  • Kim, Taek-Eui;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.379-386
    • /
    • 2008
  • Densification behavior of dissimilar material powder (copper and pure iron powder) under die compaction was investigated. Experimental data were obtained for copper and pure iron powder compacts with various volume ratios under die compaction. Dissimilar material powder was simultaneously compacted into a jointed cylindrical compact with different powder materials in inner and outer part, respectively. To simulate densification behavior of dissimilar material powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under die compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution of powder compacts under die compaction.

Application of Genetic Algorithm to Die Shape Otimization in Extrusion (압출공정중 금형 형상 최적화문제에 대한 유전 알고리즘의 적용)

  • 정제숙;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.269-280
    • /
    • 1996
  • A new approach to die shape optimal design in extrusion is presented. The approach consists of a FEM analysis model to predict the value of the objective function a design model to relate the die profile with the design variables and a genetic algorithm based optimaization procedure. The approach was described in detail with emphasis on our modified micro genetic algorithm. Comparison with theoretical solutions was made to examine the validity of the predicted optimal die shapes. The approach was then applied to revealing the optimal die shapes with regard to various objective functions including those for which the design sensitivities can not be deter-mined analytically.

  • PDF

A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet (원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 김한봉;진인태
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

A Study on the Process Planning and Die Design of Hot Forging for Axisymmetric Parts(I) (축대칭 부품에 대한 열간단조의 공정 및 금형설계에 관한 연구(I))

  • Choi, J.C.;Kim, B.M.;Kim, S.W.;Lee, J.S.;Hong, S.S.;Kim, N.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.20-32
    • /
    • 1992
  • This paper describes some research of Computer-Aided Process Planning and Die Design of Hot Forging for axisymmetric parts produced by the press. An approach to the system is based on knowledge based system. The system has been written in AutoLisp with personal computer. Knowledges for process planning & die design are extracted from the plasticity theories, handbooks, relevent references and empirical know-how of field experts in hot forging companies. The developed system is composed of five main modules, such as input module, process planning module, die design module, flow simulation module and output module which are used independently or in all. The final output is generated in graphic from. The developed system which aids designer provides powerful capabilities for process planning and die design of hot forging. This system also provides approximate flow pattern.

  • PDF

Investigation on the Description Method of Extrusion Die Surface using NURBS Surface and Area Mapping Method (NURBS 곡면과 면적사상법을 이용한 압출 금형 곡면의 표현방법에 관한 연구)

  • 유동진;권혁홍;임종훈
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.348-357
    • /
    • 2003
  • In order to construct the extrusion die surface of arbitrarily shaped sections, an automatic surface construction method based on NURBS surface and area mapping method is proposed in the present work. A center point fur area mapping is determined by introducing the mapping concept based on constant area proportionality between original billet and final product. The characteristic points of inlet profile are determined using the traditional area mapping method and the root finding numerical method. The inlet and outlet profiles are precisely described with NURBS curves using the characteristic points of entry and exit sections. For the construction of NURBS surface, an interpolation method for the pre-determined two section curves has been developed to be used in the generation of interior control points and weights. To show the validity of the proposed method, automatic die surface generation is carried out for the several kinds of shaped sections.

Hot-Pressed and Die-Upset Mischmetal-Ferroboron Permanent Magnets (핫프레스 및 다이업셋한 미슈레탈-페로보론 영구자석에 관한 연구)

  • ;H. J. Al-Kanani
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 2001
  • The magnetic and metallurgical characteristics of Mischmetal(MM) -Ferroboron (FeB) Permanent magnets have been investigated by X-ray diffractometer, scanning and transmission electron microscope and vibrating sample magnetometer under hot-pressing and die-upsetting process. The best magnetic properties obtained in these studies were $H_c$=5.8 kOe, $B_r$=5.0 kG with $(BH)_{max}=7.6 MGOe for melt-spun ribbons, $H_c$=3.0 kOe, $B_r$=4.6 kG with $(BH)_{max}$=2.9 MGOe for hot-pressed magnets and $H_c$=1.8 kOe, $B_r$=5.5 kG with $(BH)_{max}$=4.1 MGOe for die-upset magnets. The higher magnetic properties in die-upset magnets were resulted from alignment of the c-axis along the die-upsetting direction.

  • PDF

A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement (실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구)

  • Seo, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

Monitoring and Analysis on Die Loads in Multi-stage Cold Forging Process Using Piezo-Sensors (금형블록에 장착된 압조센서를 활용한 다단 냉간단조 공정의 모니터링 및 분석)

  • Kang, S.M.;Kang, K.J.;Yeom, S.R.;Lee, K.H.;Kim, J.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.5-10
    • /
    • 2022
  • In multi-stage cold forging process, to enhance the productivity and product quality, in-site process monitoring technique by implanting sensors such as piezo-sensor and acoustic emission sensor has been continuously studied. For accurate analysis of the process, the selection of appropriate sensors and implantation positions are very important. Until now, in a multi-state forging machine, wedge parts located at the end of punch-set are used but it is difficult to analyze minute changes in die block-set. In this study, we also implanted sensors to the die part (die spacer) and compared signals from both sensors and found that sensing signals from die part showed enhanced process monitoring results.

Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting (Al 합금 다이캐스팅 용 타이타늄 기지 복합재료 슬리브의 내용손성 및 내마모성 평가)

  • Choi, Bong-Jae;Sung, Si-Young;Kim, Young-Jig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and $B_4C$ leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.